
_.CI C.CCl

NASA TECHNICAL

MEMORANDUM

CC_

NASA TN X-74029

0

!

X

:E
I=,,,

Z

ANOPP Programmers' Reference Manual for the Executive System

by

Ronnie E. Gillian, Christine G. Brown, Robert W.
and Patricia H. Baucom

APRIL 1977

Bartlett,

This Informal documentation medium Is used to provide accelerated or
special release of technical Information to selected users. The contents
may not meet NASA formal editing and publication standards, may be re-
vised, or may be incorporated In another publication.

National Aeronautics and
Space Administration

Langley Research Center
Ham.I:)ton,Virginia 23665

1, Report No.

TM X-74029
4. Title and Subtitle

ANOPP Programmers'
Executive System

2. Government Accession No. 3. Recipient's Catalog No.

5. Report
Apri _)"f977

Reference Manual for the

7. Author(s}
Ronnie E. Gillian, Christine G.

*Robert W. Bartlett, and*Patricia H.

Brown,

Baucom

9 Performing Organization Name and Addreu

NASA Langley Research Center

Hampton, Virginia 23665

12. S_nsoring Agency Name and Addr_s

National Aeronautics and Space Administration

Washington, D. C. 20546

_15 Supplementary Notes

6. Performing Organization Code

8. Performino (3r(wmzation Report No.

10. Work Unit No.

505-03-2l

11. Contract or Grant No.

13. Type of Reporl and Period Covered

Technical Memorandum

14 Sponsoring Agency Code"

*Mr. Bartlett and Ms. Baucom are members of the Control Data Corporation.

16 Abstract

The ANOPP Programmers' Reference Manual for the Executive System embodies the document_

tion for ANOPP as of release level 01/00/00. The manual is designed for users who

have need for understanding the internal design and logical concepts of the ANOPP

Executive System software, Emphasis is placed on providing sufficient information

to the programmer to modify the system for enhancements or error correction.

The ANOPP Executive System includes software related to operating system interface,

executive control, and data base management for the Aircraft Noise Prediction

Program. It is written in Fortran IV for use on CDC Cyber series of computers.

17. Key Words' (Suggested"b V Author(s))

ANOPP

18. Distribution Statement

Unclassified - Unlimited

,, ,,,, • . ,

19. Secu¢itV Clauif. (of this reportj 20. Security Classif. (of this pegaJ 21. No. of Pages

Uncla ssi fied Jnclassi fied 380

22. Price"

$10.75

' F(x sale bythe NationalTechnical InfumationService,Springfield,Virginia 2216!

PREFACE

The ANOPP Programmers Reference Manual For Executive System embodies the documen-

tation in its entirity for ANOPP as of _elease level 01/00/00. Additional manuals are

anticipated in order to satisfy the various needs of the ANOPP user community. These

anticipated manuals include the following:

Theoretical Manual

User's Manual

Demonstration Problem Manual

Functional Module Writer's Guide

The Programmers Reference Manual is designed for usage by those who have need for

understanding internal design and logical concepts of the ANOPP Executive System. Emphasis

has been placed on providing sufficient information to the programmer in order to modify

the system in pursuit of either enhancements or error correction.

ANOPPPROGRAMMERSREFERENCEMANUALFOR

EXECUTIVESYSTEM

TABLEOFCONTENTS

I. INTRODUCTION

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

Program Overview

Functional Module Concept

Control Statement Concepts

Dynamic Core Concept

ANOPP Input/Output

Executive Management

Dynamic Storage Management

Data Base Management

Update

Error and Termination Philosophy

2. STANDARDS

2.1 Scope

2.2 Design

2.2.1

2.2.2

2.3

2.4

2.5

2.2.3

2.2.4

Coding

2.3.1

2.3.2

2.3.3

Tests

Module Standards

Depth of Design

Logic Structures

Design Documentation

Source Code Documentation

FORTRAN Language Standards

Assembly Language Standamds

Publishable Documentation

2.5.1 Types of Publishable Documentation

iii

F R_C_!3_iqC PAG_ BLANE NOT _ :

3.

TABLE OF CONTENTS

2.5.2 Publishable Manual Preparation

2.5.3 Changes to Baseline Manuals

EXECUTIVE MODULES

3.1 Overview

3.2 Labelled Common Blocks

3.2.1 XBSC

3.2.2 XCAC

3.2.3 XCRC

3.2.4 XCS

3.2.5 XCSFM

3.2,5 XCSPC

3.2.? XCVT

3.2.8 XDBMC

3.2.9 XDSMC

3.2.10 XDTMC

3.2.11 XP_TH

3,2.12 XR_@T

3.2.13 XSPT

3.2.E_ XUPC

3.3 Executive Control Structumes

3.3.1 System Table Types

3.3.2

3.3.3

3.3._

3.3.5

3.3.1.1

3.3.1.2

3.3.1.3

System Table Type 1

System Table Type 2

System Table Type 3

Active Member Directory (AM]))

Alternate Names Table (ANT)

Data Table Director_ (DTD)

Data Uni_Directory (DUD)

iv

TABLE OF CONTENTS

3.4

3.3.6

3.3.8

3.3.9

3.3.10

3.3.11

3.3.12

Executive Data Base Structure

Member Control Block (MCB)

Sequential Library File Directory (LFD)

Sequential Labrary Load Table (LLT)

Sequential Library Unit Table (LUT)

User Parameter Table (UPT)

User String Table (UST)

3.4.4

3._.5

_:.=,__.qqM,PAC-Ei IS

:":")_OOR. QUALITY

3.4.3

3.4.2

Data Unit Structure

Data Unit Header (DUH)

Data Member Directory (DMD)

Data Member

3. g. 2.1 Data Member Structure

3.4.2.2 Data Member Header (DMH)

3.4.2.3 Format Specification Image (FSI)

3.4.2.4 Format Specification Table (FST)

3.4.2.5 Record Directory (RD)

3.4.2.6 Record Subdirectory (RS)

Data Table Types

3.4.3.1 Data Table Type I

Sequential Labrary

3._._. I Sequential Library Structure

3._.4.2 L_brary Director./ Record (LDR)

3.4.4.3 Library Unit Header (LUH)

3.9.4.4 Library Data Member (LDM)

Reserved Units

3.4.5. I XSUNIT

3.4.5.1. I MXXX Member

3. _. 5. I. 2 UXXX Member

3.4.5.2 Data

v

3. q. 1 Data Unit

3.4.1.1

3.4.1.2

3.4.1.3

3.5

TABLE OF CONTENTS

Executive'Management System

3.5.1 Overview

3.5.2 Control Statements

3.5.2.1 Primary Input Stream

3.5.2.2 Secondary Input Stream

3.5.2.3 General Description

3.5.2.4

3.5.2.3.1

3.5.2.3.2

3.5.2.3.3

3.5.2.3._

3.5.2.3.5

3.5.2.3.6

3.5,2.3,?

Format

Valid Control Statement Names

Field Types

Delimiters

Free-Field Fo_m

Comments

Continuation

Specific Descriptions

3.5.2._.I AN_PP

3.5.2.4.2 ARCHIVE

3.5.2.4.3 ATTACH

3.5.2.4.U, CALL

3.5.2.4.5 C_NTINUE

3.5 .2 .4 .6 CREATE

3.5.2.4.7 DATA

3.5.2.4.8 DETACH

3.5.2.4.9 DR_P

3.5.2.4.10 ENDCS

3.5.2.4.11 END*

3.5.3.4.12 EXECUTE

3.5.2.4.13 G_T_

3.5.2._.14 IF

3.5.2.4.15 L_AD

vi

3.6

3.5.5

TABLE OF CONTENTS

3.5.3.4.16 PARAM

3.5.2.4.1.7 PROCEED

3.5.2.4.18 PURGE

3.5.2.4.19 RETURN

3.5.3.4.20 SETSYS

3.5.2.4.21 STARTCS

3.5.2.4.22 TABLE

3.5.2.4.23 UNLOAD

3.5.2.4.2q DATE

Executive Monitor (XM)

Execution Phases

3.5.4.1 Initialization Phase (XBS)

3.5.4.2 Primary Edit Phase (XRT)

3.5.4.3 Control Statement Processing Phase (XCSP)

3.5.4.4 Functional Module Processing Phase (XFM)

3.5.4.5 Error Processing Phase (XMERR)

3.5._.6 Secondary Edi_ Phase (XCA)

3.5.4.7 Nol_nal Temminatlon Phase (XEN)

3.5.4.8 Error Ter_nlnatlon Phase (XXFMSG)

Auxiliary Modules

3.5.5.1 Fatal ErTc_ Message Wrlter (XXFMSG)

3.5.5.2 Non-Fatal Error Message Wmlter (XXNMSG)

3.5.6 Hierarchy Chart s

ANOPP Data Base Management

3.6.1 Overview

3.6.2 DBM Control Statements

3.6.3 Data Member Manager

3.5.3.1 General DescrIptlon

3.6.3.2 Subroutine Arguments

vii

3.6..4,

3.6.3.3

3.6.3.4

3.6.3.5

3.6.3.6

TABLE OF CONTENTS

Open Data Member Subroutines

3.6.3.3.1 MM@PRD - Open for Read

3.6.3.3.2 MM_PWD - Open for Direct Write

3.6.3.3.3 MM@PWS - Open for Indirect Write

Put Subroutines

3.6.3._.I MMPUTR - Put Record

3.6.3._.2 MMPUTW - Put Partial Record - Words

3.6.3._.3 MMPUTE - Put Partial Record - Elements

Get Subroutines

3.6.3.5.1 MMGETR - Get Record

3.6.3.5.2 MMGETW - Get Partial Record - Words

3.6.3.5.3 MMGETE - Get Partial Record - Elements

Positioning Subroutines

3.6.3.6.1 MMP_SN - Position to a Specified Record

3.6.3.6.2 MMREW - Rewind Data Member

3.6.3.6.3 MMSKIP - Skip Records

MMCL_S - Close Data Member Subroutine

Auxiliary Modules

3.6.3.8.1

3.6.3.8.2

3.6.3.8.3

3.6.3.8.4

DBM Error Message Writer (MMERR)

Validate Data Unit and Member (MMVUM)

L_AD CS Error Message Writer - XLDERR

UNLOAD CS Error Message Writer XUNERR

3.6.3.9 Hierarchy Charts

Data Table Manager

3.6.q.1 Overview

3.6.4.2 Open Data Table Subroutines

3.6.4.2.1 TM_PNA - Open with Alter Permission

3.6.4.2.2 TM_PN - Open without Alter Permission

3.6.4.3 TMCL_S - Close Data Table Subroutine

3.6._._ TMTERP - Data Table Interpolation

viii

3.7

3.8

TABLE OF CONTENTS

3.6.4.5 Data Table Building

6.6.4.5.1 TMBLDI - Build Data Table Type 1

3.6.4.6 Auxiliary Modules

3.6.4.6.1 DTM Error Message Writer (TMERR)

3.6.4.7 Hierarchy CharZs

Dynamic Storage Management System (DSM)

3.7.1 Overview

3.7.2 Dynamic Storage Structure

3.7.2.1 Dynamic Storage Control Words

3.7.2.2 Reserved Block Control Words

3.7.2.3 Free Storage Control Words

3.7.3 DSM User Modules

3.7.3.1 DSMB - Determine Dynamic Storage

3.7.3.2 DSMF - Free a Reserved Block of Dynamic Storage

3.7.3.3 DSMG - Get a Block of Dynamic Storage

3.7.3.4 DSMI - Initialize Dynamic Storage

3.7.3.5 DSML - Lock Dynamic Storage

3.7.3.6 DSMQ - Query to Obtain Size of Largest Available Block

3.7.3.7 DSMR - Release Dynamic Storage

3.7.3.8 DSMS - Swap IDX Variables

3.7.3.9 DSMX - Expand a Reserved Bl_k

3.7.4 Auxiliary Modules

3.7._.1 DSM ErTor Message Writer (DSMERR)

Hierarchy Chamts3.7.5

UPDATE

3.8.1

3.8.2

3.8.3

Overview

Control Statement

Member Level Directives

3.8.3.1 General Format

3.8.3.2 -ADDR

ix

3.9

TABLE OF CONTENTS

3.8.4

3.8.3.3 -COPY

3.8.3.4 -OMIT

3.8.3.5 -CHANGE

Record Level Directives

3.8.4.1 General Description

3.8.4.2 -INSERT

3.8.4.3 -DELETE

3.8.4.4 -QUIT

Format Summary

UPDATE Output Description

3.8.6.1

3.8.6.2

3.8.6.3

3.8.6.4

3.8.6.5

Header Section

Directive Echo Section

Summary Section

CHANGE Member Section

ADDR Member Section

3.8.7 Error Philosophy

3.8.8 Auxiliary Modules

3.8.8.1 UPDATE Error Message Writer (XUPERR)

3.8.9 Hierarchy Charts

General Utilities

3.9.1 Overview

3.9.2 Reference List

3.9.2.1

3.9 2.2

3.9 2.3

3.9.2.4

3.9.2.5

3.9.2.6

3.9 2.7

3.9.2.8

ALPHA

DIGIT

DVALUE

IAND

ICD

ICI

IC_MPL

IDATE

3.9.2.9 IL_C

3.9.2.10 ILSHFT

3.g,2.11 IMASK

3.9,2.12 I@R

3.9.2.13 IRSHYT

3.9.2.14 ISHIFT

3.9.2.15 ITIME

3.9.2.16 IVALUE

3.9.2.17 IX_R

3.9.2.18 MEMNUM

3.9.2.19 NUMTYP

3.g.2.20 NWDTYP

3.9.2.21 RVALUE

3.9.2.22 XASKP

3.9.2.23 XBSRIN

3,9.2.2_ XBSRRD

3.9.2.25 XBSRRS

3.9.2.26 XCR

3.9.2.27 XCRWC

3.9.2.28 XEXIT

3.9.2.29 XFAN

3.9.2.30 XFETCH

3.9.2 31 XFMTQ

3.9.2.32 XINC

3.9.2.33 XGETP

3.9,2.34 XN_VE

3.9.2.35 XMPRT

3.9.2.36 XPAGE

3.9.2.37 XPK

3.9.2.38 XPKM

TABLE OF CONTENTS

x1

TABLE OF CONTENTS

3.9.2.39

3.9.2.40

3.9.2._1

3.9.2.42

3.9.2._3

3.9.2.44

3.9.2.45

3.9.2.46

3.9.2._,7

3.9.2.48

3.9.2._9

3.9.2.50

3.9.2.51

3.9.2.52

3.9.2.53

3,9.2.54

3.9.2.55

3.9.2.56

XPLAB

XPLABQ

XPLINE

XPUTP

XStRTF

XSTtRE

XTBDMP

XTRACE

XTIAL

XTIFV

XT2AL

XT3FL

XT3FV

XT3IF

XT3LK

XUNPK

XUNPKM

XUNPKT

3.9.3 Auxiliary Modules

3.9.3.1 Utility Fatal _or Message Writer (XUFMSG)

3.9.3.2 Systems Tables Utility Er_-om Message Writem (XTBERR)

3.9._ Hierarchy Charts

MACHINE DEPENDENT INFORMATION

4.1 OVERVIEW

4.2 CDC CYBER NOS with the NASTRAN Linkage Editor

4.2.1 Installation PToceduPes

4.2.1.1 Generate An Executable File

4.2.1.2 Modify An Existing Module

4.2.1.3 Temporarily Install A Dummy Functional Module

xll

TABLE OF CONTENTs

4.2.2

4.2.3

Appendix A.

Appendix B.

Appendix C.

Appendix D.

4.2.3.1

4.2.3.2

4.2.3.3

Glossary

4.2.1.4 Permanently Install A New Functional Module

ExecuTion Procedures

4.2.2.1 Program Loading

4.2.2.2 Data Interfaces

CDC CYBER NOS Dependency

Standards Violations

Operating System Dependant Subprograms

I/O Interfaces

Index to Module Names

Iudex to Error Message Numbers

References

xlii

Page No.

i

ii

iii

iv

V

wi

vii

viii

ix

x
xi

xii

xiii

×iv

xv

xvi

I.I-I

1.2-1

1.3-1

1.3-2

1.4-1

1.4-2
1.5-1

1.6-1

1.6-2

1.6-3

1.7-1

1.7-2

1.8-1
1.8-2
1.8-3

1.8-4

1.8-5

1.8-6

1.9-1

1.10-1

2.1-1

2.2-1

2.2-2

2.2-3

2.2-4

2.2-5

2.2-5

2.2-7

2.2-8

2.2-9

2.2-10

2.2-11

2.2-12

2.2-13

2.2-14

2.2-15

2.2-16

2.2-17

2.2-18

Most Recent

Date Chan_ed

PAGE

Pa_e No.

2.3-1

2.3-2

2.3-3

2.3-4

2.3-5
2.3-6
2.3-?
2.3-8
2.3-9

2.3-10
2.3-11
2.3-12

2.3-13

2.3-14

2.3-15
2.3-16
2.4-1
2.4-2

2.4-3
2.5-1
2.5-2

2.5-3
2.5 -u,
2.5-5
2.5-6
2.5-7
2.5-8
2.5-9

2.5-10
3.1-1
3.2-1

3.2-2
3.2-3
3.2-4
3.2-5
3.2-6
3.3-1
3.3-2

3.3-3
3,3-4
3,3-5

3,3-6
3,3-7
3,3-8
3,3-9
3.3-10
3.3-11

3.3-12

3.3-13

3.3-14

3.3-15

3.3-16

3.3-17

3.3-18

3.3-19

STATUS LOG

Most Recent

Date Changed

xlv

Pase No.

3.3-20

3.3-21
3.3-22
3.3-23

3, 3-24
3.3-25
3.3-26
3.3-27
3.3-28

3.3-29
3.3-30
3.3-31

3.3-32
3,3-33
3.4-1
3.4-2

3.4-3
3.4-4
3.4-5
3.4-6

3.4-7
3.4-8

3.4-9

3.4-10

3.4-11
3.4-12
3.4-13

3.4-14

3.4-15

3.4-16

3.4-17

3.4-18
3.4-19
3.4-2O
3.4-21
3.4-22

3.4-23
3.4-24
3.4-25
3.4-26

3.4-27
3.1_-28
3.5-1

3.5-2

3.5-3
3.5-4

3,5-5
3.5-6
3.5-7
3.5-8
3.5-9

3.5-10
3.5-11

3.5-12
3.5-13

Most Recent

Date Changed

Page No.

3.5-14

3.5-15

3.5-16

3.5-17

3.5-18

3.5-19
3.5-20
3,5-21
3.5-22

3.5-23
3.5-24
3.5-25

3.5-26

3,5-2?
3.5-28

3.5-29
3.5-30

3.5-31
3,5-32
3.5-33
3.5-34
3,5-35
3.5-36

3,5-3?
3.5-38
3.5-39
3.5-40

3,5-41

3.5-42
3.5-43
3.5-_,4
3.5-45
3.5-46
3.5-47
3.5-48
3.5-49
3.5-50
3.5-51

3.5-52
3.5-53

3.5-54
3,5-55
3.5-56
3.5-5?
3.5-58
3.5-59

3,5-6O
3,5-61
3.5-62

3.5-63

3.5-64

3.5-65
3.5-66

3,5-6?
3.5-68

Most Recent

Date Ch_n_ed

ORIGINAL PAGE IS
OF POOR QU_.LIT_

PAGE STATUS LOG

Pa_e No.

3.5-69
3.5-70

3.5-71

3.5-72

3.5-73

3.5-74

3.5-?5
3.5-76
3.5-77
3.5-78

3.5-79

3.5-80

3.5-81

3.5-82

3.5-83

3.5-84

3.5-85
3.5-86
3.5-87

3.5-88
3.5-89
3,5-90
3, 5-91

3.5-92

3.5-93
3.5-94
3,6-1
3.6-2
3.6-3
3.6-4
3.6-5
3.6-6

3.6-7
3.6-8
3.6-9
3.6-10
3.6-11
3.6-12
3.6-13

3.6-14
3.6-15

3.6-16
3.6-17

3.6-18
3.6-19

3.6-20
3.6-21

3.6-22

3.6-23

3.6-24

3.6-25

3.6-26

3.6-27

3.6-28

3,6-29

Most Recent

Date Changed

xv

Page No.

3.6-30
3.6-31

3.6-32
3.6-33

3.6-34
3.6-35
3.6-36
3.6-37

3.6-38
3.6-39
3.6-4O
3.6-41

3.6-42

3.6-_3
3.6-44

3.6-45
3.6-46
3.6-47

3.6-48
3.6-49
3.6-50
3.6-51
3.6-52
3.6-53

3.6-54

3,6-55
3.6-56
3.6-57
3.6-58
3.6-59
3.6-60

3.7-1

3.7-2
3.7-3
3.7-4
3.7-5
3.7-6
3.7-7
3.7-8
3.7-9
3.7-10

3.7-11

3.7-12

3.7-13

3.7-14

3.7-15

3.7-16
3.7-17

3.7-18

3.7-19

3.7-20
3.7-21

3.7-22

3.7-23

3.7-24

Most Recent

Date Changed

Pase No.

3.7-25
3.7-26

3.7-2?
3.7-28
3.?-29
3.?-30

3,7-31
3.7-32
3.8-1

3.8-2
3.8-3
3.8-4
3.8-5

3.8-6
3.8-7
3.8-8
3,8-9
3.8-10
3.8-11

3.8-12
3.8-13
3.8-14
3.8-15

3.8-16
3,8-17
3.8-18

3.8-19
3.8-20

3.8-21
3.8-22
3.8-23
3.8-24
3.8-25
3.8-26

3,8-27
3.8-28
3.8-29
3.8-30

3.9-1
3.9-2
3.9-3
3.9-4
3,9-5
3.9-6

3.9-?
3.9-8
3.9-9
3.9-10

3.9-11
3.9-12
3.9-13

3.9-14
3.9-15
3.9-16
3.9-17

Most Recent

Date Changed

PAGE STATUS LOG

Page No.

3.9-18

3.9-19
3.9-20
3.9-21
3.9-22

3.9-23
3.9-24
3.9-25

3,9-26
3,9-2?

3.9-28
3,9-29
3.9-30
3,9-31
3.9-32
4.1-1
4.2-1

4.2-2
4.2-3
4.2-4

4.2-5
4.2-6
4.2-7

4.2-8
4.2-9
4.2-10
4.2-11

4.2-12
4.2-13
4.2-11_.
_,. 2-15

4.2-16
4.2-17

4.2-18
4.2-19
A-1
A-2

A-3
A-_
A-5
A-6
A-7

A-8
B. 1-1
B.1-2

B.I-3

B. 1-4

B.1-5

B. 1-6

B.I-7

B.I-8

B. 1-9
B.1-10
B.1-11
B. 1-12

Most Recent

Date Chansed

xvt

Page No.

B.1-13

B.I-14

B.1-15

C.1-I

C.1-2

C.1-2

C.1-3

C. 1-4

C.1-5

C.1-6
C.I-7

C.1-8

C.1-9

C.1-10

C. 1-11

C.1-12

C.1-13

C.1-14

C.1-15

C.1-16

D-1

Most Recent

Date Changed

INTRODUCTION

1.1 PROGRAM OVERVIEW

The Aircraft Noise Prediction Program (ANOPP) was developed to be a repository for

current and future approaches to computerized study of aircraft noise. Today's methods

are highly empirical; tomorq, ow's will be analytical. To the developer of new technology

and prediction methods, ANOPP is where new algorithms and code can be deposited as a new

or replacement part of an integrated system. To the planner or user, ANOPP is the

source of current information and state-of-the-art prediction methods at selected

levels of complexity for a suitably described model.

With these objectives in mind, the fundamental design requirements of the system

were defined as:

i. flexibility for the addition, replacement, or removal of prediction

methods

2. user control for selective and effective use of The various methodologies

The design requirements are met by separating executive functions fqcom noise

prediction functions. Thus, all of the noise prediction applications technology is con-

tained in functional modules.

The executive system provides fom progmam initialization and interface with the

host computer operating system. It provides for user control of execution via a control

statement language processor. It provides storage manag_ent and data management for

the functional modules. It provides e_or handling and exit procedures to the host

operating system.

The remainder of this chapter will outline the chamacTeristics and motivations for

several significant pamts of the executive system. The interfaces and interactions

between the executive and functional modules will be shown. The rest of this Programmer's

Manual will provide more individual detail of the entire executive system.

i1.1-1

: INTRODUCTION.

1.2 FUNCTIONAL MODULE CONCEPT

A functional module is a logically independent group of subprograms or modules which

performs noise prediction functions. The size varies with the number and Type of modules

required for The functions to be performed.

A functional module is called into execution by the ANOPP executive system upon user

request via a control statement. At The Time of request The specified functional module is

loaded into core and execution is begun. Upon completion the functional module returns

execution control %o the ANOPP executive system. An executive module is brought into the

core space previously occupied by The now completed functional module to process the

remaining control statements supplied by The user. Upon encountering a subsequent func-

tional module request, the process is repeated.

Thus a functional module is core resident if and only if it is being executed at user

request. It is transient and shares the same core space with other functional modules as

well as executive modules.

General characteristics of functions include:

I. Functional modules are independent.

2. Functional modules do not call one another directly.

3. Functional modules are called f-_om and retumn control to the executive manager.

_. Functional modules request and release storage through a dynamic storage manager.

5. Functional modules input and output data through a data base manager.

1.2-1

INTRODUCTION

1.3 CONTROL STATEMENT CONCEPT

Just as the loading and execution of ANOPP is controlled by a set of job control cards

monitored by The host computer operating system, so is the sequence of module executions

within ANOPP controlled by a set of executive control statements monitored by the ANOPP

executive management system. The control statements interpreted by the ANOPP executive

manager provide:

i. execution sequence control with branching

2. exchange of parameters among The user, the executive manager, and the functional

modules

update capabilities for the ANOPP data base

the ability to load/unload various pamTs of the ANOPP data base.

3.

4.

The format for an ANOPP control statement is:

label control statement name operand(s) $ optional comment(s)

The structure and operand(s) appropriate To specific control statements can be found

in Section 3.5.2 of this manual. Several general characteristics are of interest here.

The label field provides Tag addresses for looping and branching. The operands provide

parameters for control of conditional branching and exchange of information among the user,

the executive manager, and the functional modules. Control statements are terminated with

a dollar sign ($); otherwise, they are assumed To be continued on The next card image. A

limited number of continuation cards are per_nitted. Optional comments may follow the

terminal character.

A set of control statements in card image format is taken from the primary input

stream, edited and stored in edited format on The data base. The statements are then

executed one at a time from this edited set. A collection of control statements in un-

edited or card image form may be saved in the ANOPP data base and subsequently retrieved by

a CALL Control STatement in a later r_n. At the time of first execution of a CALL control

statement, a specified pre-stored set of ca_ image control statements is retrieved,

edited and executed f_om beginning to end. Upon completion of The called set, execution

1.3-1

INTRODUCTION

then continues with the control statement following the CALL. The control statements in

edited form are saved for subsequent execution if required. The called set may itself

contain further CALL statements in a cascading series of expansions, but the user must be

careful to avoid an infinitely recumsive CALL loop. While not currently implemented, the

capability to interactively enter and interpret single control statements in a card image

set is not precluded in the present design of the executive system.

1.3-2

INTRODUCTION

1.4 DYNAMIC CORE CONCEPT

Dynamic core is that portion of machine memory available within the pro_am's region

or field length that is not occupied by permanent or transient routines. This area is

managed by a part of the ANOPP executive known as the dynamic storage manager. The total

size of this dynamic core area varies directly with the field length available during an

individual ANOPP execution. The capability provided by the dynamic storage manager is

similiar to va?iable dimension arrays in FORTRAN and permits module writers to vary the

size of data a_eas and to adjust their solution algorithms depending on the amount of core

available.

The total dynamic core area is divided into two parts: a Global Dynamic Storage area

and a Local Dynamic Storage area. Global dynamic storage is of ,fixed length during a

single ANOPP execution and resides at the end of the program's region or field length.

Local dynamic storage is of varying length and is bounded by the longest current transient

routine on one side and by the start of global dynamic storage on the other side (see

Figure i). The dynamic storage manager allocates and de-all6cates various size blocks up

to the limits of the reserved space available fop both local and global storage. Indivi-

dual blocks of core within dynamic storage ape defined By their starting location and

length. The starting location is defined as an index relative to the variable IX in a

fixed common biock /XbI_PP/ that resides near the beginning of the pro_am's region. The

global storage area is available throughout a single ANOPP execution and is generally used

for executive tables and control blocks required by the executive system. The local

storage area is reserved and released during individual executive or functional module

executions and is generally available as scratch space during the execution of these

transient routines. While functional modules may use available space in global sto_age

during their time of execution, they can not use global storage blocks as a means or

mechanism for transmitting infommation om data to other functional modules directly.

0RIG/NAL PAGE IS

DF POOR QUALITy
I.#-I

INTRODUCTION

RA+ 0

* local boundary

+ global boundary

+ FL

permanent modules
/XAN_PP/

Executive Monitor

Dynamic Storage Manager

Data Base Manager

transient module(s)

local

dynamic cope

global

dynamic cope

Figure I. Layout of Come Storage.

1.4-2

INTRODUCTION

1.5 ANOPP INPUT/OUTPUT

The Input and Output files from the host computer operating system are readily

available %o the routines of the ANOPP executive system. They are less easily accessible

by the functional modules.

Functional modules receive and transmit their primary input/output via the ANOPP data

base and the member manager and table manager facilities. There is no provision for

reading directly from the host system input file. Information may be written directly to

the host system output file; however, this should be done in conjunction with the execu-

tive system paging routines (XPLINE, XPAGE, etc.) to insure accurate line counts and page

headings. Functional modules can also exchange limited numbers of parameters via the

PARAM control statements, the executive pamameter functions (XGETP, XPUTP, XASKP), and The

user parameter table.

Since functional modules need information from The ANOPP data base to operate, the

capability to place information in the data base must be provided. Thus, three control

statements, DATA, TABLE, and UPDATE, provide means for reading cards from the primary

input stream and transferring the information into the ANOPP data base in various selected

formats.

1.5-1

1.6 EXECUTIVE MANAGEMENT

INTRODUCTION

The Executive Management System consists of The main executive monitor which controls

The sequence of operation of the execution phases and The submonitors which control the

operations within each phase. The first program executed is the executive monitor (XM)

which immediately calls the XBS module to perform ANOPP system initialization.

The executive bootstrap module (XBS) first checks to see that the required initial

ANOPP control statements exist and are positioned correctly. XBS then initializes the

global portion of dynamic storage via The dynamic storage manager, and executive and data

base management tables and directories are allocated and initialized in dynamic storage.

XBS returns to XM which calls the XRT module to edit the set of ANOPP control statements

in the primary input stream and w_ite the edited set on the data base to be executed later

by the executive control statement processor module (XCSP).

The executive module XRT edits The set of control statements from the primar,] input

stream in one pass and writes them to the ANOPP data base in an edited control statement

format that is structured for input to The executive control statement processing phase.

In the edit phase, the syntax of each control statement is checked and labels are matched

with their corresponding branching statements. The edit phase does not "execute" the

control statements, but simply transforms them from card image to "executable" format.

Then, the late_ processing modules can act more efficiently on the executable form thai is

well structured syntactically and contains label tables for efficient branching capa-

billty. Several control statements have optional input following them. These control

statements are DATA, TABLE, and UPDATE; and their input is ter_ninated by an END _ control

statement before the next regular control statement. In these cases, the XRT module puts

such input data on the data base and provides linking information so That this data can

be retrieved durlng execution processing. The edit phase is complete and XRT returns to

XM when an ENDCS card is found in the input stream. XM next calls the executive contmol

statement processor module (XCSP) to execute the edited control statements.

I. 6-1

INTRODUCTION

The control statement processing module retrieves from the data base the edited form

of the first control statement in the primary input stream and calls upon an appropriate

executive module to process it. Upon process completion, control returns to the XCSP

module which continues with the iterative pattern of read/process until the pattern is

terminated by the ENDCS statement. The ENDCS indicates the set of control statements

supplied by the user in the primary input stream has been completely executed and ANOPP

should be terminated. The module which is called by XCSP to process the ENDCS thus per-

forms normal termination procedures for ANOPP and does not return to XCSP.

XCSP may be interrupted by either an error or a request for execution of a functional

module via the EXECUTE control statement. In these two cases, control returns from XCSP

to the executive monitor to determine what action is to be taken next. In all cases, the

XCSP module remains in control and cycles through the read/process iteration for each

control statement encountered. It is during this processing phase that the pre-stored set

of control statements referenced by a CALL control statement is edited and processed

before continuing with the next control statement. The edited form of the called control

statement is written onto the data base and is available for subsequent retrieval. Thus

editing is done only once at the first execution of the CALL statement. Any looping to

re-execute the CALL statement will not cause redundant editing but only re-execution of

the previously edited control statements.

When control returns from XCSP to XM, either error processing or functional module

execution is indicated. If error processing is indicated, XM calls the error module XMERR

to perform action according to procedures discussed in Section i.i0. Regardless of action,

XMERR always returns to XM upon completion. If functional module execution is indicated,

XM calls XFM to control the loading, execution, and clean-up processes. The functional

module can make use of any and all services of the dynamic storage managem, the data base

manager, and the executive utilities. The only restriction is that the functional module

cannot terminate abnormally, hut must rettu-n con%-_ol to XFM and thus to XM. XFM will

perform some clean-up procedures if the functional module has neglected to release or

close dynamic storage areas or data base structures. Control then returns to XM.

1.6-2

EXECUTIVE MANAGEMENT

When error processing or functional module execution has been completed, XM again

calls the executive control statement processor module (XCSP) to continue executing the

control statements.

In summary, the executive management system first performs bootstrap initialization

and edits the primary input stream control statement set. Then it cycles among control

statement processing, functional module execution, and error handling until completion.

1.6-3

INTRODUCTION

1.7 DYNAMIC STORAGE MANAGEMENT

The ANOPP dynamic storage management system is a collection of modules that perform

specific operations on the dynamic core areas discussed earlier. These modules are

directly callable by the ANOPP executive and functional modules. Local dynamic storage

and global dynamic storage are treated separately but equally by the modules of the

dynamic storage management system. However, the modules of the executive management

system do not treat them equally. The global dynamic storage area is initialized by the

XBS module and never released during the rest of an ANOPP execution. Local dynamic stor-

age on the other hand is initialized and released repeatedly by various executive modules

and each functional module that makes use of it. For both types of storage, the remaining

functions of dynamic storage management can be performed only during the time between

initialization and release.

The basic function of the dynamic storage manager is to allocate and de-allocate

blocks of storage within the initialized dynamic storage areas. Each block is located by

an index with respect to the variable IX in a fixed common block /XAN_PP/. This index is

generically referred to as the IDX of the block. When a dynamic core block is assigned to

a calling module, the index (IDX) and length (LEN) are returned to the module. The

module can then reference any location within the block by addressing between the limits

of IX (IDX) to IX (IDX+LEN-I). Alternatively, the module can pass the argument IX(IDX)

and LEN to a submodule that receives them as an array A of length LEN and can address any

location within the block from A(1) to A(LEN).

The initialization of a dynamic storage area consists of setting the boundaries with

control words and declaring the remaining area to be one large free block. The size of

the free block is reduced as reserved blocks ave requested and assigned to calling modules.

Eventually a reserved block will be freed by a calling module and it will b_ linked into a

chain of free blocks along with the now reduced original free block. This process of

reserving, reducing, freeing and chaining goes on until a request is made for more re-

served space than is contained in any one of the individual blocks in the free chain. At

OR!G-II_AL PAGE IS

OF POOP,, QUALITY

I. 7-I

INTRODUCTION

this time a storage move takes place to consolidate all the fragmented free blocks into

one large free block, unless storage has been locked at the request of a calling module.

The IDX's of all relocated reserved blocks are updated accordingly. If the requested

space is not available, the calling module is informed that the lenglh of the block

assigned is zero. In this case the calling module may free some blocks and try again, may

request less space, or may request space in the other (local/global) storage area. When

all else fails, the user can rerun the job with more field length.

1.7-2

INTRODUCTION

1.8 DATA BASE MANAGEMENT

The ANOPP data base is a hierarchial structure from top to bottom and consists of:

LIBRARIES

UNITS

MEMBERS

RECORDS

ELEMENTS

WORDS

A library is a collection of units, a unit is a collection of members, a member is a

collection of records, a record is a collection of elements, and an element is a collec-

tion of words.

Paralleling the hieearchial data base is a hierarchial data base management system

consisting of directories, control statements, and subroutines that operate on individual

parts of the data base or between adjoining parts. For example_ the CREATE control state-

ment establishes a new data unit while the UNLOAD control statement forms units or subsets

of units into libraries. An overview of this parallel structure is given in Figure i.

Units are equivalent to files in the host operating system. The Data Unit Directory

(DUD) contains a table of correspondence between internal ANOPP data unit names and external

host operating system file names. The collection of data units named in the DUD defines

the current data base for ANOPP execution. It consists of those data units that have been

created, attached, or loaded up to this point, and that have not yet been detached or

purged. The physical external file for a data unit contains a unit header, a member

directory of current members on the unit, and the actual members and records themselves.

For an attached, created, or loaded data unit in the DUD, a copy of its unit header is

kept as part of its entry in the DUD. An operating system I/O buffer in global dynamic

core is also associated with a data unit's external file.

1.8.1 Member Manager

Below the level of unit is a member. A member and its substructures, records, ele-

ments, and words, are managed by a set of Member Manager Subroutines. These routines are

callable from both executive and functional modules. A member is a collection of records

i. 8-_

, . ,'L. ¸ / , _ _

Data Base

Structumes Directories

INTRODUCTION

Control

Statements Subroutines

LIBRARY LUT

LFD

LLT

LUH

LDR

L_AD, UNLOAD

L_IT
DUD CREATE, PURGE

DMD ATTACH, DETACH
DUH UPDATE

MEMBER
MCB -ADDR MM_PWS

DMH -COPY MM@PWD

DUH -CHANGE MM@PRD

RD -@MIT MMCL@S

AMD MM_EW

RECORD RS -INSERT

-DELETE

-QUIT

MMGETR

MMPUTR

MMSKIP

MMP_SN

ELEMENT FSI

FST
MMGETE

MMPUTE

WORDS MMGETW

MMPUTW

Figume I. Data Base and Data Management Parallels

1.8-2

DATA BASE MANAGEMENT

of the same format. Records are not formatted in the sense of format conversion as with

FORTRAN coded records. Rather, the format indicates the structure of the records by

giving the types of the record elements. Element types specify whether the data is inte-

ger, real, complex, single, double, or an alphanumeric string. The types are equivalenced

to word lengths such as one word for an integer and four words for a complex double.

Record reads and writes are really copying of binary data from/to external physical files

to/from machine memory. The associated format provides a module writer with information

for accessing individual record elements within sequential FORTRAN arrays.

When a data member resides on a physical external file, it contains a member head

followed by the records of the member. The member header contains record format informa-

tion as well as a record directory and subdirectory of member records relative to the

beginning of member. When a data member is open for I/0, its name is included in an

Active Member Directory (AMD), and a Member Control Block (MCB) is assigned in Global

Dynamic Storage. These entries point to the DUD entry for the unit on which the member

resides. The DUD entry points to the last operating system file buffer for the external

file. All of these thread back to a NAME array that is used in every Member Manager call

for action on the member.

The Member Manager routines provide capabilities to open, write, read, position, and

close a mec_ber and its records. All calls to Member Manager subroutines provide a three

word NAME array to indicate the data unit name and member name and to hold a pointer to

the MCB. When a member is opened to read or write, a Member Control Block in dynamic

storage is assigned and pointed to by the NAME(3) argument. The MCB points to the Active

Member Directory entry for the open member and the Data Unit Directory entry for the unit

on which the member resides. The Active Member Directory points both to the Data Unit

Directory entry for the unit/member named and to the NAME argument supplied in the open

call. The Data Unit Directory points to the External File Buffer (EFB) for the operating

system file equlvalenced tO the data unit. See Figure 2, Diagram of Member Manager Di-

rectory Connections.

1.8-3

INTRODUCTION

I
I

I

i

:K!

!

O

4.J

K:
O
co

O

(2

.,4

m
=
m
X

0

.,4

.,4
b.4

1.8 -_,

DATA BASE MANAGEMENT

All the records of a member occupy contiguous space on a data unit. Thus, when a

member is open to write either sequentially or randomly, it often is necessary to actually

write The records to a scratch unit until the member is closed. At that time all the

records on the scratch unit are copied to the member's space on the real unit and the

scratch unit is released. It is permissible to write records directly to a unit/member,

but only one member at a time may be open for writing directly to the same unit.

When a men,bet is opened to read the following actions take place. The unit name is

found in the DUD and its Member Directory is read into core through the External File

Buffer (EFB). If the member is found on the unit, then a Member Control Block is assigned

and the Member Header is read into the MCB area. A member open to read entry is made in

the Active Member Directory. With all these connections established at open time, the

Member Manager is now ready for subsequent read requests to transfer data from the exter-

nal file into a central memory record holding area. Records can be read in whole or in

part with partial records specified by either word length or number of elements. Members

can be rewound and records can be read sequentially or randomly with the additional

capability to skip forwards or backwards over records or to position directly to a speci-

fied record. When closed, the MCB is released and if there are no other members currently

open on the same data unit_ the EFB is released also. The AMD entry is closed for reading,

and if the member is not currently open to write also then the AMD entry is released. A

member may be open to read and write concurrently since the member to be read must be an

existing member in the current Member Directory for the data unit and the member open to

write will go to a new place on the data unit and will not modify the Member Directory for

the unit until the write process is closed. Since there is no re-write-in-place, read

will continue to process the old version of a member while the new version is being written.

1.8.2 Table Manaser

An ANOPP data table is a one record member. For this special class of members, the

record holding area in dynamic storage into which the one record of the member is read is

reserved and managed by the ANOPP Table Manager. The table name (unit/member) is held in

1.8-5

 o7,7

INTRODUCTION

a Data Table Directory along with a pointer to the table (record) area in global dynamic

storage. Thus, these tables can remain in core under control of Table Manager during the

execution of several functional modules. Like other units/members, the units/members

whose one record constitutes a table cannot remain open after execution of a functional

module. It is only the table data in the record holding area that remains in core under

control of the Table Manager.

When a table is first opened, the unit/member is opened, the table record is read

into core, and the unit/mender is closed. The table name and a pointer to its core

location is entered into the Data Table Directory. When the table is closed by the

module that opened it, the table is logically closed in the DTD. A subsequent request to

open the table will open it logically in core from the DTD. A request to close it will

again close it logically. If a functional module opens a table _ith the intention of

altering it, then it is rewritten to its real unit/member at the same time that it is

logically closed in core.

The Data Table Directory holds a fixed number of tables in core -- some open, some

closed. A request to open a table is first satisfied by opening the table if it is found

in a search of the closed table chain in the Data Table Directory. If the table is not

closed in core and available for re-opening, then an empty entry must be found in the DTD

so that the unit/member/record for this table can be read into core and open member status

can be entered into the DTD. If there are no free entries in the DTD, then one of the

closed table entries will be released to make room for the new table entry. A subsequent

request to open the table that was released will result in a fresh copy being read into

core and re-entered in the DTD. If the DTD is full of open tables only, then no new

tables can be entered and the job must be re-run with a new parameter value (NAETD) on the

AN@PP control statement to initialize a DTD large enough to accommodate all the tables

expected to be simultaneously open during the run.

1.8-6

INTRODUCTION

1.9 UPDATE

An update capability has been provided for manipulating the ANOPP data base by

reconfiguring the members of a unit and/or changing the records of a member. This capa-

bility has been provided at the ANOPP control statement level so that a user can control

the outcome of an ANOPP execution by adjusting the data base prior to executing a func-

tional module or unloading units of the data base to a sequential library.

The update capability is patterned after the structured organization of the data

base. For modifying data units, there are record level directives to add, copy, omit, or

change a member. For modifying data members there are record level directives to insert

and/or delete records. This capability is non-destructive. In no case are the records or

members of a unit rewritten on the same unit. In all cases update executes from an old

data unit to a new data unit, or to a new data unit alone if no old unit exists. Update

can operate in full or partial mode. In partial mode, only those members mentioned on

update directives are processed from the old to the new data unit. In full mode, all

members are processed.

One use of update is to reconfigure data units. This may be done to reduce wasted

space on physical storage devices or to reorganize or combine members on a data unit in a

manner more conducive to efficient execution by the intended ANOPP user. Another use is

to create temporary data for use during an execution.

1.9-1

INTRODUCTION

i.i0 ERROR PROCESSING AND TERMINATION PHILOSOPHY

ANOPP may terminate either normally or abnormally. Normal termination occurs when

the ENDCS control statement is processed. Abnormal termination occurs when a fatal error

inhibits further meaningful execution is encountered.

Abnormal termination procedures are invoked whenever a fatal error is encountered by

any executive module. Execution control is not passed back to the calling module by a

return but instead a call is made directly to one of several error message modules. After

printing an informative message, the message module calls the ANOPP abort module, XEXIT,

to perform abnormal termination procedures and to terminate execution. Only executive

modules have abort privilege. A functional module may never terminate ANOPP execution

directly. However, abnormal termination may occur indirectly when a functional module is

in core if an executive module, called to perform a service function, detects a fatal

error. Abnormal termination will then occur as described.

Errors which do not inhibit further execution are called non-fatal and are detected

by either executive modules or functional modules. All errors detected by a functional

module are non-fatal to the executive system. If a module is able to correct the error

situation and continue processing, no further action is required. If, however, the module

is unable to successfully complete its function, return is made to the executive management

system with the executive error parameter NERR set to .TRUE. A functional module must not

terminate abnormally but must return control to the executive management system.

If an error occurs during either the initialize or edit phases of executive manage-

ment, then execution continues and ANOPP is abnormally terminated upon completion of edit.

Thus all errors in card image input are detected in one ANOPP execution. If an error

occurs in later phases of processing control statements or execution of functional modules

a return is made to the controller XM with NERR set as previously indicated. Subsequent

action depends upon the system parameter JCON. Processing will continue with either the

next control statement or the first encountered PR@CEED control statement.

1.10-1

STANDARDS

2.1 SCOPE

These standards define the requirements for preparing software for the Aircraft Noise

Prediction Program (ANOPP). It is the intent of these standards to provide definition,

design, coding, and documentation criteria for the achievement of a unity among ANOPP

products.

These standards apply to all of ANOPP's standard software system. The standards as

expressed in this publication encompass philosophy as well as techniques and conventions.

2.1-I

2.2 DESIGN

STANDARDS

2.2.1 Module Standards

The Aircraft Noise Prediction Program will utilize the concepts of "composite design"

for program structure. Composite design involves the construction of a program in terms

of modular structure and module interfaces.

A module is a group of program statements that can receive input data, perform one

or more transformations on that data, and return output data. The modules for ANOPP will

have the following general characteristics.

I. The executable and comment statements for the module can be listed contiguously.

2. The statements are enclosed by identifiable boundaries; e.g., in FORTRAN,

from a PROGRAM or SUBROUTINE card to an END card.

3. The statements are considered to be a discrete and identifiable entity that can

be referenced from other parts of the program only by the module name or its

single entry.

4. The module can be referenced from other parts of the program only by the module

name or its single entry.

5. The module will have a single, common entry and a single, common exit.

6. The module can reference or CALL other modules, suspend its execution upon

encountering the CALL statement, and resume execution with the next immediate

statement.

7. All called modules must return to their caller at the statement immediately

following the CALL statement.

A module has three attributes: function, logic, and interfaces. For a composite

design, a module should be described by its functions; i.e., what happens when the module

is called. This characteristic can be described as data flow through the program A

functional description of a module should contain a verb, such as, "Find Largest Block".

A module's logic describes the internal working or data flow within a module. Another

attribute of a module, interconnection or interface, is concerned with module communication.

" 4
2.2-1

STANDARDS

ANOPP modules will be designed to be as functionally independent as possible with

minimum interface. Reliability, ease of understanding, and ease of maintenance are the

objectives of these standards.

Guidelines to be followed to achieve the standards of modularity for ANOPP are:

I. Simplicity - Use the simplest solution, design and/or interface that is possible.

2. Design efficiency - Design a module to solve the current problem efficiently;

i.e., never design a module to do more that it is required to do.

3. Aligned control and effect - Align modules and decisions in modules so modules

that are directly affected by a decision ape beneath and controlled by the

module containing the decision.

_. High strength - Maximize binding, the relationships among the elements of a

module. For high strength or binding modules should:

a. have all elements related to the performance of a single function,

b. have a single entry and a single exit,

c. have a function which is easy to describe,

d. be independent from other modules,

e. be unsusceptible to errors from complex design and coding,

f. be usable by other programs, and

g. be modifiable without affecting other modules.

5. Low interconnection - Minimize coupling, the relationships between modules.

To attain the desired low interconnection or loose coupling, modules should:

a. not directly reference other modules to:

(1) modify a program statement,

(2) refer to data in another module,

(3) branch directly into another module, or

(4) physically reside within another module;

b. not pass control information to other modules;

c. use only the following types of data interconnections:

(I) argument lists,

(2) co.non areas, and

2.2-2

6,

DESIGN

(3) data base members.

Size - Limit the size of a module to I00 lines of executable source language

statements. Clarity, simplicity, and understanding are related to module

size.

2.2.2 Depth of Desisn

Program structuring involves an analysis of the problem, the flow of data through the

problem, and the transformations that occur on that data. Equally, it involves identifi-

cation and definition of modules to solve the problem.

involve:

i.

2.

3.

The phases of program structuring

definition of the structure of the problem,

identification of the input and output in the problem,

identification of the points of entry and exit for data, and

reduction of the problem into a set of subordinate modules.

A graphic representation of a module and subordinate modules will result in a hier-

archy of modules. The graphic representation is called a "hierarchy chart" and should be

drawn to illustrate the problem's solution.

After the problem has been reduced into a set of subordinate modules, the process is

repeated viewing each subordinate module as an independent problem that can be reduced

into othe_ subordinate modules. Some rules to follow are:

i. The entire structure should be constantly reviewed to take advantage of modules

that are identical.

2. A module must be completely analyzed before its subordinates can be analyzed.

3. The order in which modules at the same level are analyzed and reduced is not

important. It is not necessary to analyze a module and all of its subordinates

before starting another module.

Conditions for terminating this iteratlve reduction process a_e:

I. When a module can be reduced no further into independent functional modules.

2. When further reduction of a module leads to the undesirable attributes of low

2.2-3

STANDAKDS

strength and high interconnections; i.e., low binding and high coupling.

8. When the logic of a module can be completely visualized; i.e., usually resulting

in less than 100 executable sTaTemenTs.

4. When further reduction leads to highly specialized, unaligned, and inefficient

sets.

5. When the resulting documenTaTion (Chapin-style charts) can be drawn on two or

less sheets of 8½" x II" paper. (One page is the desirable objective.)

The final design phase of a module should follow These steps:

I. A Chapin chart should be drawn to illustrate the module's logic structure.

2. Documentation should be set down to define the module's purpose, inputs, outputs,

local variables, functions, error conditions, control structures, data base

structures, standards violations, and any additional explanatory remarks.

This constitutes the first portion of the module's prologue and is intended to

be included with the source statement listing.

3. A "walk Through" of the module should be staged by the design team to insure

workability.

4. Pseudo code reflecting the logic structure outlined by the Chapin chart should be

completed. This completes The module's prologue.

2.2.3 Logic STructures

All of The ANOPP modules will be logically designed so The execution flow will be

sequential from one logic structure to the next logic structure. ANOPP module design will

use four basic logic structures. Coding of a logic structure may require more than one

executable source statement. No matter how complex the particular structure, upon comple-

tion of its execution, the next structure will be executed. This sequential flow logic is

characteristic of "top-down" design. The four logic structures are defined with tradi-

tional graphics in the following pamagraphs for educational value and comparison with the

ANOPP standard Chapin charts.

2.2-4

DESIGN

2.2.3.1 Simple Sequence Structure

2.2.3.1.1

2.2.3.1.2 Description

Logical Flow Diagram

I statement

statement

Each statement within the structure is simple in that it performs one basic function;

e.g._ an assignment of an evaluated expression to a variable or a call to another module

(or subordinate).

2.2.3.2 IF THEN/ELSE Structure

2.2.3.2.1 Logical Flow Diagram

ELSE (False) _ THE_ (True)

Logic Logic 1
Structure(s) StTucture(s)

Block 2 Block 1

STANDARDS

2.2.3.2.2 Description

The IF THEN/ELSE structure describes the flow sequence that occurs when there are two

blocks of logic structure(s) and only one block should be executed according to a decision

criteria or condition. The condition is a simple or a complex logical expression which

has a value of True or False. If upon execution the condition is True, the logic struc-

ture(s) of Block I (the THEN path) is(are) executed. If the condition is False, the logic

structure(s) of Block 2 (the ELSE path) is(are) executed. When the last logic structure

in the chosen path has been executed, control goes to the next logic structure or state-

ment following the IF THEN/ELSE structure. This logic structure adheres to the "top-down"

design in that the common entry is the point at which the condition is tested and the

common exit leads to the next logic structure.

2.2.3.3 DO WHILE/DO UNTIL Structure

2.2.3.3.1 DO WHILE Logical Flow Diagram

>

/ True

I Logic

Structure(s)

Block

False

2.2.3.3.2 DO WHILE Description

A block of logic structure(s) which may or may not be executed one or more times

depending on a given condition is described by the DO WHILE loop structure. The loop

structure adheres to "top-down" design in that the loop is entered at one point and flow

within the loop pro_esses to one common exit point; i.e., the point at which the condi-

2.2-6

DESIGN

tion is Tested. The condition is a simple or complex logical expression which has a value

of True or False. The condition is tested at the beginning of the loop, before the

execution of the logic structure(s) block, and if True, the logic structure(s) is(are)

executed. When execution of the logic structure(s) is(are) complete, control returns to

the beginning of the loop and the condition is tested again. Looping continues until the

condition is False; control then passes to the next logic structure following the DO

WHILE structure.

2.2.3.3.3 DO UNTIL Logical Flow Diagram

False

Logic

Structure(s)

Block

2.2.3.3.4 DO UNTIL Description

A block of logic structure(s) which will be executed one or more times depending on

a given condition is described by the DO UNTIL loop structure. The structure adheres to

the "top-down" design in that The loop is entered at one point and flow within the loop

progresses to one cow, non exit point; i.e., the point at which the condition is tested.

The condition is a simple or complex logical expression which has a value of True or

False. The condition is tested at the end of the loop, after the execution of the logic

structure(s) block, and if False the logic structure(s) block is executed again. This

continues until the condition tested is True; control then passes to the next logic

structure following the DO UNTIL structure.

lflF p_ " "OE, -:.,
• ..,_,_ q,LrA/,iT.i:

2.2-7

2.2.3.4 CASEStructure

STANDAKDS

2.2.3.4.1 Logical FlowDiagram

condition=condition1

condition=condition2

I Logic

" Structure(s)

11 Block 1

Logic

Structure)s

Block 2

condition=condition n

Logic

Structure(s)

Block n

- ->
>

2.2.3.4.2 Description

The CASE logic structure describes the flow sequence that develops when there are two

or more blocks of logic structures, only one of which will be executed according to a

given condition or decision criteria. The condition when evaluated must have a resulting

value identical to one and only one of the conditions given (i.e., condition I, condition

2, , condition n). Control will pass to the beginning of the block identified by the

matching condition. Upon completion of the chosen block, control will pass to the next

logic structure following the CASE structure. The CASV structure adheres to the "top-

down" design in that the structure is entered at one point, the test condition point, and

after execution of the chosen block, control passes to one common exit and the next logic

structume.

2.2-8

DESIGN

2.2.4 Design Documentation

The design phase should result in a description of the structure of the program with

descriptions of the module and intermodule interfaces. For the ANOPP project, the design

phase will result in (1) hierarchy charts of the areas of the program, (2) Chapin charts

with external specifications (module prologue) for each module depicted on the hierarchy

charts, and (3) pseudo code.

2.2.4.1 Hierarchy Charts

A hierarchy chart will depict the results of the composite analysis process (top-down

reasoning - structural process). This creative process is necessary to arrive at the

modular logic and involves the analysis of the problem, the flow of data through the

problem_ and subdivision of the problem into modules that will perform transformations on

the data.

A hierarchy chart depicts each module, the level of the module (order), and the lines

of communication for the module. In its optimal form, a hierarchy chart should be con-

tained on one page (Figure I). As an area can have several levels of modules, it may be

necessary to place a module with its subsequent levels on additional pages; however, all

subordinate modules on the same level should be placed on the same page. In the example

illustrated in Figures 2 and 3, five levels of modules are necessary. The submodules of

the module "Control to Next Level" (Level 3) could not be depicted on the same page and

were subsequently placed on an additional page. (Note the asterisk in the upper right

corner of the "Control to Next Level" box. This indicates that this module is expanded as

a separate hierarchy)

Each module will have a short title, descriptive of its function, and a name that is

used to reference the module. Module names should be descriptive of the function.

2.2-9

STANDARDS

0

Z
0

0

0

Z

E

0

°_

2.2-10

DESIGN

u_

o
_4

Z
0

,r.4

,..1

,I

E-,

0

¢,'3

cj
0

P.

P_
Z
H

p.,
E.-,

0

0

,7

(',I

U_
i.a
Ul
r)
0

co

t rt

O'l
CO
L_

0

0_

u_

U_

o_
o
.'4

.=

O

m

c_

_o
.,4

2.2-11

STANDARDS

,_1[--,
OX,-1

Ix: I._I[._
[-' Z 1>
Z
00,-I
C__ [--,

oD

¢,I

X_
U')

[-,

v
CO

c_

XI
U_

Izl
:D
(.n

I-4

[-,

0

0
-.-I

(n
m

_Z
£)

.C
0

m

m
"I-

G)

bO

U-

_9

2.2-12

DESIGN

2.2.4.2 Chapin Charts

A Chapin chart will be drawn for each module depicted on the hierarchy chart. The

drawn Chapin chart will detail the internal logic of the module using simple control

structures. In a structured program module, any program function can be performed using

one of four control structures. The Chapin forms for these structures are:

I. Simple sequence

2. IF THEN/ELSE

3,

4. CASE

Repetition

DO WHILE

DO WHILE AT B

[

DO UNTIL

DO UNTIL A>B

CASE (I) depending on i

CASE I is really a generalization of the selection function (IF THEN/ELSE) from a

two-valued to a multi-valued operation.

Any kind of processing, any combination of decisions, and any sort of logic can be

accomodated with one of these control structures or a combination of these control struc-

tures. Each structure is characterized by a single point of transfer of control into the

structure and a single point of transfer out of the structure. The control structures can

be nested and still retain this characteristic.

--_'IiV_4 .,
U_, b,7 _L A_--,

2.2-13

STANDARDS

A tricky situation, prevalent in current practice, arises when a designer desires to

terminate a repetition block upon encountering a specific condition. If this termination

is diagrammed as illustrated below, it violates the single entry/single exit principle

else "'"--_.,.J_ then

a+l=a

a=d

DO UNTIL a=e

of structured programming. However, equivalent logic is produced by using a multi-valued

condition in the classical structure as shown below.

a+l:a a=d

DO UNTIL a:e or a:b

A program utilizing these control structures tends to have no statement labels. (The

actual implementation of these structures in a non-structured language llke FORTRAN will

require the use of statement labels. See Section 2.3 - CODING.) Utilizing these control

structures in a top-down design eliminates arbitrary and capricious branching in a module

and results in a more precise flow of data.

The hand drawn Chapin charts (Figure 4) will be generated in the design process for

formal "walk through" reviews of the structured design. The purpose of the review will be

to uncover flaws in the design. The Chapin chart will enable the reviewers to examine the

entire logic of the module.

In addition to the use of the restricted control structures, the Chapin charts will

also contain other attributes for ease of understanding. The chart will contaid the title

and name of the module. The module name should be descriptive of the function performed

by the module and is the name that is used to reference the module (for example, in a CALL

statement).

2.2-14

DE S IGN

CALL DECIDE(VARI,VAR2)

_TRY

Set TAG to 1 for 1st CASE X

DO WHILE TAG _ 4

DO CASE (1,1), (2,2), (3,3), (4,4), Depending on value of TAG

1 2

CAIL TAG1 CALL TAG2

IF TAG
ELSE

If VAR2+TAG EVEN

ELSE
CALL SMALL2 CALL GREAT2

3

CALL TAG3

4

CALL TAG4

<3
THEN

/IfVARI+TAGEVE J
ELSE THE

CALL SMALL1 CALL GREAT1

Increment TAG by 1

EXIT

Purpose - To initialize TAG areas and build tables.

Date - Designed/g/30/75, JD - Coded/10/15/75, MP

Functions - Call individual TAG areas in sequence. On the

first two passes, build a small or large type one

table first depending upon the value of the input

parameter VAR1. On the next two passes, build

a small or large type two table first depending

upon the value of the input parameter VAR2.

Inputs - VARI = i if Great Table I is to be built first
VARI = 2 if Small Table I is to be built first

VAR2 = 1 if Great Table 2 is to be built first

VAR2 = 2 if Small Table 2 is to be built first

Outputs - None

Figure 4. Typical Chapin chart with external specifications.

2.2-15

STANDARDS

The language for the Chapin chart should not be cryptic to the point that only the

designer understands the logic. Neither should it be so wordy that it can't fit in the

box.

The use of the IF THEN/ELSE control structure will sometimes result in a do-nothing

or NULL statement from the question. It is preferred thai the NULL statement be designed

and implemented from the ELSE path of the question.

Module lengths should be limited to a manageable size. No firm rule can exist for

size; however, the tendency is to have between 10 and I00 lines of executable statements.

With this size, a single entry, single exit, and no arbitrary jumps to other parts of the

program, there is little need for page-turnlng or holding several places which must be

referenced constantly.

The function performed by the module should be described i_ a single sentence fol-

lowed by an expanded description, if necessary. The expanded description can be a narra-

tive description, tables, etc., and should be easily adaptable to card for_nat for inclu-

sion in the programming documentation.

There should be a precise description of all input and output data for the module.

It should include all parameters, any physical order, size, type, and range of valid

values. A full description of module intemconnections is necessary as it will usually

affect any calling module. Any external effects should be explained, e.g., the reading of

a tape or printing.

The module name, functional description, input and output description, and external

effects will be called the module's external specifications. For design, these items will

be placed on the Chapin chart and/or additional pages if necessary. These items will be

prepared to be carried onto the program listing as the first half of a module's prologue.

2.2.4.3 Pseudo Code

After the design "walk through" and approval, the Chapin chart will be converted into

indented control structure pseudo code in punched card for_nat. This will constitute the

second half of the module's prologue.

2.2-16

DESIGN

Pseudo code, English phrases derived from the Chapin chart, describes the flow of The

control structure. The simple sequence is a statement. The It" THEN/ELSE structure is

divided into Three parts: (I) IF is usually a one line question; (2) THEN is a statement

To be executed if the answer is true; and (3) ELSE is a statement if the answer is false.

The THEN statement and/or ELSE statement can be followed by other questions and/or state-

ments. The DO UNTIL, DO WHILE, and CASE are statements.

The pseudo code acts as a bridge between the design and coding phases. IT is a

Transformation of the highly graphic, parallel vision, Chapin charts into a form similar

To the lop-down, straight line, final source code. As such, there ape several guidelines

for converting the Chapin charts To pseudo code.

I. All decisions which alter the simple sequence flow of the program will be shown.

If, during coding, a FORTRAN flow altering statement is introduced, it must be

reflected in The pseudo code.

2. All FORTRAN CALL statements must be reflected as a simple sequence statement

in pseudo code.

3. Each FORTRAN statement which is a simple sequence type does not require a match-

ing statement in the pseudo code if it is part of a group of FORTRAN statements

which performs a con_non pseudo code statement.

Example:

PSEUDO CODE

Calculate X, Y, Z coordinates

FORTRAN STATEMENT

X =

Y =

Z =

_. The control statements IF, DO WHILE, DO UNTIL, and CASE always denote additional

statements will follow. Each of these control statements will use an appropriate

END statement to denote the end of a particular set. The END statement will be

_ndented the same number of columns as its subject. The END statements are

ENDIF, ENDDO, and ENDCASE.

5. The pseudo code will be written in a format with strict indentation in each

2.2-17

STANDARDS

groupandsubgroupof statementsfor easeof understandingandclarity.

Section2.3.1 - SourceCodeDocumentationfor specific rules.

See

2.2-18

STANDARDS

2.3 CODING

To ensure ease of understanding, maintaining, and interchanging of ANOPP code,

certain standards will be imposed. These standards encompass both documentary comments

and specific language statements. It is recommended that any exceptions to standards be

employed only within the bounds of a specific module and not be allowed to couple with

other modules.

2.3.1 Source Code Documentation

Comment statements in any programming language are both source code and documentation.

Thus, various kinds of descriptive information which would normally appear in publishable

programming documentation can be captured as comments in the source code also. For ANOPP,

design and documentary information will be brought together and placed in the program

source listing. This information will be contained in a special module prologue section

at the beginning of a routine and in regular comment statements interspersed among the

executable statements of a routine. The prologue section should explain the purpose and

functioning of a routine as well as the flow of control within the routine. If any coding

standard is violated, it must be noted in the prologue and, as an additional comment, in

the executable statements. The in-line comments are supplementary in nature and should

explain special cases or values and other non-obvious implementations.

The first line of a routine is the program header, be it PROGRAM, SUBROUTINE, FUNC-

TION, BLOCK DATA, or IDENT. The module prologue will appear immediately following the

program header and preceding any other lines of source code. The source code and optional

comments will follow the prologue.

The module prologue contains both descriptive information and a pseudo code transla-

tion of the module's Chapin chart. The definition of prologue contents and format is

given below. An example of a prologue is illustrated in Figure I.

2.3-1

STANDARDS

COLUMN

0 0

1 5

,%

,%

ANOPP PROLOGUE FORMAT

iiii

02_6

PURPOSE - shor_ description of subprogram function (i - 2 sentences)

AUTHOR - initials (level number such as L01/O0/00)

INPUT

ARGUMENTS

Name I - description

Name - description
n

OTHER

/common block name/

Namel, ...,Name n - described in subprogram name
or

/common block name/

Name I - description

Name - description
n

or

Verbal description if required

(For common variable, only those applicable to the module should be

listed. The full description of each variable is required for major

modules. However, for sub-modules, a reference to where the description

can be found is sufficient.)

OUTPUT

ARGUMENTS - same as for INPUT

OTHER - same as for INPUT

LOCAL VARIABLES

Name I - description

Name - description
n

FUNCTIONS

i. Function I

n. Function
n

CONTROL STRUCTURES

Description of control s%-ructures or reference to descciption in another

subprogram or published manual. Control Structures include core tables,

directories, control blocks, e_c.

2.3-2

CODING

DATA BASE STRUCTURES

Description of control structures or reference to description in another

subprogram or published manual. Data Base Structures are unit, member, and

record structures.

SUBPROGRAMS CALLED

Subprograms, ... Subprogram

ERRORS

NON-FATAL

i. Condition I (error message class and number)

n. Condition (error message class and number)
n

FATAL

same as for NON-FATAL

STANDARDS VIOLATIONS

I. Short description

n. Short description

REMARKS

Additional comments

ENTRY

Pseudo Statement (in columns I0, 15, 20, etc.) - simple sequences and the

following sets of key words should be aligned in order within a set: IF, THEN,

ELSE, ENDIF; DO CASE, CASE, ENDCASE; DO WHILE, DO UNTIL, ENDDO. Subsequent

substructures should be indented 5 spaces.

EXIT

The headings PURPOSE, AUTHOR, INPUT, OUTPUT, FUNCTIONS, ERRORS, AND SUBPROGRAMS .

CALLED will be mandatory. If a mandatory heading is not applicable, "None" should be

indicated after the heading and all subheadings omitted (e.g. INPUT - NONE). If a

mandatory heading is applicable, all subheadings under it must be specified. The

headings LOCAL VARIABLES, CONTROL STRUCTURES, DATA BASE STRUCTURES, STANDARDS VIOLATIONS,

and REMARKS are optional and, if not applicable, should be omitted.

The statements in the pseudo code should be labeled with statement numbers where

appropriate. These numbers should be in numerically ascending sequence from the top

down. Corresponding FORTRAN statements in the source code should be similarly numbered in

the same top-down sequence.

/

2.3-3

STANDARDS

,%

A

INTEGER FUNCTION NWDTYP(ITYPE)

PURPOSE - DETERMINE THE NUMBER OF WORDS REQUIRED FOR A DATA

TYPE GIVEN ITS ANOPP INTEGER TYPE CODE.

AUTHOR - SSS(L01/O0/O0)

INPUTS

ARGUMENTS

ITYPE ANOPP INTEGER TYPE CODE

OTHER

/XCVT/

NDTCL, NMH, NCPW - DEFINED IN /XCVTBD/

OUTPUT

INTEGER FUNCTION VALUE OF NUMBER OF WORDS IN FIELD

FUNCTIONS

I. DETERMINE THE NUMBER OF WORDS IN A FIELD GIVEN ITS TYPE

CODE

2. VALIDATE TYPE CODE

INVALID CODES ARE ZERO AND OUT OF RANGE STRING VALUE

DATA STRUCTURES

SEE ANOPP PROGRAMMERS RLTERENCE MANUAL FOR FULL

DESCRIPTION

I. ANOPP DATA TYPES TABLE

SUBPROGRAMS CALLED

XUFMSG

ERRORS

NON-FATAL - NONE

FATAL

I. INVALID ANOPP TYPE CODE

XUFMSG ERROR MESSAGE NUMBER 4

ENTRY

IF TYPE CODE IS BETWEEN I AND I0

THEN FIND NUMBER OF WORDS IN ANOPP DATA TYPES TABLE

i0 ELSE IF FIELD ILLEGAL (TYPE CODE GREATER THAN 20)

THEN COMPUTE NUMBER OF WORDS FROM CODE

20 ELSE IF FIELD CHARACTER STRING (TYPE CODE BETWEEN -i AND

-132)

THEN COMPUTE NUMBER OF WORDS FROM CODE

30 ELSE ILLEGAL TYPE CODE

ABORT WITH MESSAGE

40 ENDIF

50 ENDIF

60 ENDIF

EXIT

Figure I. _olo_e _d execut_le sta¢_ent listing.

2.3-_

3O
C
C

CODING

LOGICAL NERR

COMMON /XCVT/ NERR ,NEXPND

1 ,NDT ,NDTCL(12,3) ,NBPW

2 ,NCPW ,NBPC ,NMH

3 ,NTNAME ,NTMAX ,NTCUR

4 ,NTENT ,NTSTRT ,NT3USD

5 ,NT3FRE ,NT3OTR ,NT3STR

6 ,IWR ,IRD ,LENGL

7 ,NWPCI ,NMCPW

IF(((ITYPE.LT.I).OR.(ITYPE.GT.10)) GO TO 10

NWDTYP = NDTCL(ITYPE,3)

GO TO 60

10 IF(ITYPE.LE.20) GO TO 20

NWDTYP = (ITYPE-21+NCPW)/NCPW

GO TO 50

20 IF(((ITYPE.GE.0).OR.(ITYPE.LT.-NMH)) GO TO 30

NWDTYP = (-ITYPE+NCPW-I)/NCPW

GO TO 40

CALL XUFMSG(_, 6HNWDTYP, 5HITYPE, ITYPE)

THE CALL ABOVE SHOULD ABORT

THE STOP BELOW INHIBITS ILLOGICAL EXECUTION

STOP

40 CONTINUE

50 CONTINUE

60 CONTINUE

RETURN

END

Figure 1. Prologue and executable statement listing. (Continued)

2.3-5

STANDARDS

Section 2.2.4.3 described the design conversion from Chapin chart to pseudo code.

Section 2.3.2 will describe the translation from pseudo code to FORTRAN source code.

Thus, the pseudo code in the prologue is a highly visible bridge between the module as

designed and the module as coded. Capturing this documentation in the source code will

simplify the tasks of understanding, testing, and maintaining a module's code.

2.3.2 FORTRAN Language Standards

The requirements of ANOPP will impose certain restrictions on the use of the normal

FORTRAN language for two reasons. First, the requirement for machine independence demands

the use of a FORTRAN subset that operates compatibly on several manufactumer's computers.

Second, the set of requirements for structured programming and its attendant simple logic

structures demand several implementation algorithms since FORTRAN is not a structured

programming language.

2.3.2.1 Machine Independence

FORTRAN, a high level compiler language, is relatively machine-independent. Even so,

standard FORTRAN (ANSI X3.9-1966) has not been implemented by the same or different manu-

facturers to be completely independent of machine architecture. However, a fundamental

precept of ANOPP development is to minimize implementation and conversion problems on the

major third generation scientific computers (CDC CYBER series, IBM 360/370 series, UNIVAC

II00 series). To this end, ANOPP code will conform to ANSI standards as defined in the

FORTRAN Extended Version 4 Reference Manual subject to the restrictions listed below.

NON-ANSI constructions (indicated by shaded areas in the reference manual) must not

be employed. The following are standards that are to be followed to maximize machine

independence.

i. The magnitude of an integer constant or variable may not be greater than 231-1.

2. Subscripted variables should contain no more than 3 subscripts.

3. Array variables must he referenced with explicit subscripts, e.g., A(1) = 0,

not A = O.

2.3-6

CODING

4. A C_NTINUE statement requires a FORTRAN statement number.

5. The PAUSE statement is not to be used.

6. The NAMELIST statement is not to be used.

7. Implied D0's in DATA statements are not allowed. An array name without sub-

scripts is allowed although it is an ANSI violation.

8. The last statement of a DO loop may not be a logical IF statement.

9. BLOCK DATA subprograms may contain only type (e.g., REAL, INTEGER), DIMENSION,

COMMON, and DATA statements.

10. All variables containing Hollerith data should be limited to eight characters

left-justified and blank-filled. The forms nL and nR should not be used for

Hollerith data. The form nH should be used. When using Ai format specification,

i must not exceed 8. A3, A6, A8 are valid; AIO is invalid.

ii. Packed fields within a computer word should not be used.

12. Octal (0 or B) or Hex (Z) in DATA or FORMAT statements may not be used.

13. Specification statements should precede any executable statement.

14. The order of specification statements should be as follows:

COMPLEX

DOUBLE PRECISION

REAL

INTEGER

LOGICAL

EXTERNAL

DIMENSION

COMMON

EQUIVALENCE

DATA

15. The variables in a COMMON block should be ordered as follows: complex, double

precision, _eal, intezer , and logical.

16. Variables stored as single preelsion cannot be referenced as double precision

variables (via the FORTRAN EQUIVALENCE statement) because of the different

2.3-7

STANDARDS

internal word storage format for single and double precision words.

17. Caution must be exercised to insure that types (REAL, INTEGER, etc.) of FORTRAN

functions agree in the function subprogram and in the calling program. This

agTeement between types is necessary for machines (e.g., IBM 360) in which

REAL and INTEGER values of FORTRAN functions are returned in different regis-

ters.

18. No attempt to extend the length of arrays through the EQUIVALENCE statement

should be made.

19. Caution must be exercised when using the EQUIVALENCE statement. Optimizing

compilers do not guarantee that the values used for :he equivalenced variables

will be the expected value. Hence, EQUIVALENCE should be used only between

variables which have non-intemsecting use spans in a program. Storage and

retrieval of a variable value is not necessarily in the order given by FORTRAN

source,

20. Multiple entry routines and routines with nonstandard retumns are no_ to be

used.

21. There must be agreement with respect to the number of arguments and the type

of each argument in the argument list of a calling program and the called

subroutine.

22. Only the carriage control characters "I" and "blank" may be used to control

printer spacing. No spacing oP suppression of spacing characters may be used.

23. Modification of the length of an explicit type declaration (e.g., REAL_8) is

not allowed.

24. Deck (om member) names for subroutines should be six or less characters and

should agree with the pPimamy entry point names. Deck names for Block Data

subprograms should end with the characters "BD".

25. FUNCTION subproETams whose type is not implicit must be typed in the FUNCTION

statement. For exa_le, use

DOUBLE PRECISION FUNCTION ABC(X)

and not

2.3-8

CODING

FUNCTION ABC(X)

DOUBLE PRECISION ABC

26. The name of a FUNCTION subprogram must appear somewhere within the subprogram.

27. All subscripted variables appearing in EQUIVALENCE statements must be subscripted,

e.g., use EQUIVALENCE (A(1), X(1)) instead of EQUIVALENCE (A,X).

28. DO loop indices may not be greater than 217 - I (13!,071).

29. Logical operations are permitted on non-logical variables only using supplied

functions IAND, IOR, ICOMPL, IXOR.

30. Subscripts may not contain subscripted variables.

31. Actual subroutine parameters that are changed by the called subroutine must

have unique locations.

Example: CALL SUB(A, A) where SUB is as follows:

SUBROUTINE SUB(C, D)

C = 10

RETURN

END

is not allowed.

32. No DATA statements for variables in common blocks outside BLOCK DATA programs

will be used.

33. Blank common will not be used.

34. ENCODE, DECODE, or similar installation or machine dependent routines will

not be used.

35. Branching into the range of a DO statement is not allowed.

36. It is preferred that the use of constant numbers for referencing or indexing

tables be restricted.

2.3.2.2 Structured FORTRAN

FORTRAN is not a structured progTamming language. FORTRAN syntax does not directly

include the logic constructs defined in Section 2.2.3 and Section 2.2.4 of this document.

However, several implementation algorithms can be defined to permit adherence to the

concept of structured programming.

2.3-9

"_ STANDARDS

2.3.2.2.1 Simple Sequence

FORTRAN syntax permits easy implementation of the simple sequence structure. There

is no need for statement numbers within the sequence except for format statements that do

not alter the flow of execution. Entry to the sequence may require a statement number if

it is entered as the result of a previous branching structure.

Example:

Pseudo Code FORTRAN Code

GET X READ 100, X

COMPUTE SQUARE ROOT OF X SX = SQRT(X)

PUT RESULT PRINT I00, SX

2.3.2.2.2 IF THEN/ELSE

FORTRAN syntax does not include an IF THEN/ELSE structure. However, various combin-

ations of Arithmetic If, Logical If, Go To, and Continue statements can provide the two-

branch logic desired. The rules for their use are as follows:

I. The THEN path must precede the ELSE path in top-down order in both the pseudo

code and the FORTRAN code.

2. The ENDIF statement must be represented by a numbered Continue statement.

3. The Arithmetic If statement with two of the three branches equal is the preferred

implementation.

4. The Logical If must be used with logical variables or multiple relational expres-

sions.

The Logical If must be implemented with a .NOT. condition and a Go To the5,

ELSE path.

Example 1: Arithmetic If

Pseudo Code

IF ANGLE .LE. 180

I THEN COMPUTE SIN(ANGLE)

2 ELSE COMPUTE - SIN(180 - ANGLE)
3 ENDIF

FORTRAN Code

IF(PI - THETA) 2, 1, I

or

IF(THETA - PI) 1, I, 2

I SINTH = SIN(TMETA)

GO TO 3

2 SINTH = -SIN(PI - THETA)

3 CONTINUE

2.3-10

Example 2: Logical If

Pseudo Code

IF SWITCH IS TRUE

THEN CALL SUBA

I ELSE CALL SUBC

2 ENDIF

Example 3: ELSE path null

Pseudo Code

IF X .LT. ZERO

I THEN X : ABS(X)

ELSE NULL

2 ENDIF

CODING

FORTRAN Code

IF(.NOT.(SWITCH)) GO TO 1

CALL SUBA

GO TO 2

I CALL SUBC

2 CONTINUE

FORTRAN Code

IF(X) 1,2,2 (preferred)

or

IF(.NOT.(X.LT.0)) GO TO 2

1 X = ABS(X)

2 CONTINUE

2.3.2.2,3 CASE

DO CASE (condition 1, statement I) (condition n, statement n) on test variable

The DO CASE structure can be implemented with a variety of programming techniques

employing a combination of Go To, Computed Go To, Logical If, Arithmetic If, and Continue

statements. In all cases the ENDCASE statement must be represented by a CONTINUE state-

ment with a statement number. Four basic examples are illustrated.

Example 1: Integer Test Variable

Pseudo Code FORTRAN Code

DO CASE (1,1) (2,2) (3,3) (4,_)

(5,5) on I
I Process Control Statement I I

2 Process Control Statement 2 2

3 Process Control Statement 3 3

4 Process Control Statement 4 4

5 Process Control Statement 5 5

6 ENDCASE 6

GO TO (i, 2, 3, 4, 5) I

CALL PRCSI

GO TO 6

CALL PRCS2

GO TO 6

CALL PRCS 3
GO TO 6

CALL PRCS4

GO TO 6
CALL PRCS5

CONTINUE

2.3-11

STANDARDS

Example2: Arithmetic If

Pseudo Code FORTRAN Code

DO CASE (-,1) (0,2) (+,3) on X

i SX = SQRT(-X)

2 SX = 0

3 SX = SQRT(x)
ENDCASE

IF (X) I, 2, 3

I SX = SQRT(-X)

GO TO 4

2 SX = 0

GO TO 4

3 SX : SQRT(X)
4 CONTINUE

Example 3: Logical If with an executable statement

Pseudo Code FORTRAN Code

DO CASE ("A",I) ("B",2) ("C",3)

("D",_) on NAME
I CALL SUBA

2 CALL SUBB

3 CALL SUBC

CALL SUBD

5 ENDCASE

1 IF(NAME.EQ.IHA) CALL SUBA

2 IF(NAME.EQ.IHB) CALL SUBB
3 IF(NAME.EQ.IHC) CALL SUBC

IF(NAME.EQ.IHD) CALL SUBD
5 CONTINUE

Example 4: Logical If with Go To

Pseudo Code FORTRAN Code

DO CASE ("A",I) ("B",2) ("C",3)

("D",_) on NAME

I CALL SUBA

2 CALL SUBB

3 CALL SUBC

4 CALL SUBD

5 ENDCASE

IF(NAME.EQ.IHA) GO TO I

IF(NAME.EQ.IHB) GO TO 2

IF(NAME.EQ.IHC) GO TO 3

IF(NAME.EQ.IHD) GO TO
GO TO 5

I CALL SUBA

GO TO 5

2 CALL SUBB

GO TO 5

3 CALL SUBC

GO TO 5

CALL SUBD

5 CONTINUE

2.3.2.2._ DO WHILE (condition) and DO UNTIL (condition)

The DO WHILE stmucture implies that condition testing is done before the sequence of

operations is performed. The DO UNTIL structure implies that the sequence of operations

is performed at least once before condition testing is done. These structures can be

implemented in FORTRAN with various combinations of Arithmetic If, Logical If, Go To,

Continue, and Do statements. The possible variations are too myriad to enumerate speci-

fically. However, the following standards will promote adherence to the spirit of top-down

structured programming.

2.3-12

CODING

I. A Do statement can be used for a DO UNTIL with an incrementing condition.

2. If a Do statement is used for a DO WHILE, then the condition must be tested

as the first statement inside the Do or as the statement immediately preceding

the Do if it is an incrementing condition with variables instead of constants.

3. All FORTRAN Do loops must end with a numbered CONTINUE statement.

2.3.2.2.5 CONTINUE

A CONTINUE statement is used if required to insure that the DO WHILE or DO UNTIL will

stand alone (i.e., not depend on the previous or next pseudo code structure). A labeled

CONTINUE statement can therefore appear in the FORTRAN code with a label number not

appearing in the Pseudo code. The label numbers should, of course, appear sequentially in

the FORTRAN code. Examples I, 3, and 4 show a labeled CONTINUE not shown in the Pseudo

code but required for implementation.

ment.

Example 1

Pseudo Code

DO UNTIL (TABLE(I) = NAME FOR

I = I to TABLELENGTH)

10 ENDDO

Example 2

Pseudo Code

I0 DO UNTIL A EQUALS B

ENDDO

Example 3

Pseudo Code

DO WHILE (I.LE.K FOR I = J

TO K)

.o.,,o

I0 ENDDO

Example 2 shows the absence of any CONTINUE state-

FORTRAN Code

DO 9 1 = I, LTAB

9 CONTINUE

I0 CONTINUE

FORTRAN Code

I0

IF(N.NE.B) GO TO i0

FORTRAN Code

IF(J.GT.K) GO TO I0

DO9 I = J, K

.,°°,°

9 CONTINUE

tO CONTINUE

2.3-13

STANDARDS

Example 4

Pseudo Code FORTRAN Code

9 DO WHILE (A.EQ.B .OR. C 9 IF(.NOT.(A.EQ.B .OR. C.GT.D))

.GT.D) *GO TO I0

• ,.,,.

•

GO TO 9

10 ENDDO 10 CONTINUE

2.3.3 Assembly Language Standards

There is no unique assembly language that is compatible across several manufacturers'

computers. The assembly language standards for ANOPP, then, fall into two categories: (I)

general requests to adhere to the spirit of structured programming and (2) specific

interface requirements between FORTRAN and assembly language subroutines for a given

machine.

2.3.3.1 General Rules

The following general rules will promote clarity and understanding while adhering to

the spirit of structured programming.

I. Each routine shall have a module prologue as described in Section 2.3.1.

2. Multiple entry points and non-standard returns are not allowed.

3. Self-modifylng code is not permitted. Instructions can change data only,

they cannot change other instructions.

4. Assembly code must follow the same top-down order as the pseudo code.

5. Liberal use of comments is recommended for clarity and understanding.

6. The prologue's pseudo code should be repeated in appropriate comment fields

of assembly statements.

7. Local macro definitions should be found after the prologue at the beginning

of a routine.

8. System macros should briefly be explained and a document reference cited.

2.3-1_

CODING

2.3.3.2 COMPASS/FORTRAN Interface

Several conventions must be observed when FORTRAN and COMPASS subroutines are inter-

mixed. For FORTRAN Extended, theconventions are explained in the Fortran Extended

Version q Reference Manual. A brief list follows:

i. Every COMPASS subroutine shall have:

a. IDENT and END cards beginning in column ll;

b. A trace word of the form VFD 42/name, 18/entry address;

c. An entry point of the form name DATA 0;

d. An entry point name agreeing with the deck name on the IDENT statement;

e. Register AO saved on entry and restored upon exit.

2. Function subroutines shall return single precision values in register X6;

double precision and complex values are returned in registers X6 and X7.

3. Subroutine and function calls are performed by a return jump sequence with

trace information and argument addresses passed through an argument list.

The form is as follows:

ARGLIST

=X external subprogram name

12/line number, i8/trace word address

SA1

+ RJ

- VFD

ARGLIST VFD

VFD

VFD

VFD

601ARGE address

60/ARG2 address

60/ARGM address

60/0 end of argument address list

Sample parts of a COMPASS subroutine are shown in Figure 2.

.. , ,

2.3-15

STANDARDS

IDENT SAMPLE

*p

*R

* 0

* L

* 0

* G

* U

* E

TRACE

TEMPAO

EXIT

SAMPLE

+

ALIST

A

B

C

ENTRY SAMPLE

VFD

DATA

SAI

SAO

DATA

SX6

SA6

SAO

,,,

,..

SAt

RJ

VFD

°,,

SA!
SAt

,..

,°,

EQ

VFD

VFD

VFD

VFD

DATA

DATA

DATA

°,,

END

42/OLSAMPLE, 18/SAMPLE
0

TEMPAO

X1

0

AO

TEMPAO

A1

ALIST

=XSUB

12/*-TRACE, 18/TRACE

AO+I

X1

EXIT

601A

601B

601c

6010

0

0

0

Trace word

Holding location for AO
Restore AO

Entry point
Save AO

Save input argument list
address

Call SUB(A,B,C)

Fetch 2nd argument

Restore AO and return through entry point

Address of A

Address of B

Address of C

End of argument list

Storage for A

Storage for B

Storage for C

Figure 2. Sample parts of COMPASS routine.

2.3-16

2.4 TESTS

STANDARDS

Testing is the activity that takes coded pseudo and FORTRAN statements and removes

compiler statement errors, input formatting errors, output formatting errors, and program

structural and logic errors. The testing activity is composed of (i) desk checking, (2)

component testing, (3) integration testing, and (4) system testing.

2.4.1 Desk Checking

Upon completion of coding of the FORTRAN or assembly statements for a module, the

product should be reviewed with the Chapin chart and the pseudo code for completeness and

accuracy. The module is compiled and all compiler generated errors are removed to obtain

an error-free compilation.

2.4.2 Component Testin_

Component or isolation testing is that activity which takes a module, exercises it

through its full range of inputs and outputs, and evaluates its performance for any

necessary correction. Each and every path of a module must be exercised during component

testing. Stubs for other modules that are referenced must be generated to allow a smooth

run to completion.

Standards for component testing will produce tests that will:

I. exercise typical error free cases,

2. exercise error free worst case,

3. produce each error code,

4. produce variations of errors,

5. vary all system parameters affecting the module for the above runs, and

6. vary user options affecting the module for the above runs.

2.4.3 Integration Testing

After component testing, the module is integrated into the program. In the figure

below, all modules designated with I are integrated and the modules designated with N are

2.4-1

STANDARDS

not integrated. A module is never integrated into the program unless it is subordinate to

a previously integrated module.

f I
-- R m J

I

u_

N

I
I

I

I

Z_
.... I

' I

I N I

I I

[l

When a module is integrated into the program, integration tests will be performed.

Integration and testing is the activity wihch places the tested module into the program

and exercises the module. The module is exercised as thoroughly as possible for inter-

action with other modules. The tests should check for:

i. typical case with no errors,

2. worst case with no errors (checking for efficiency and any designed limits),

3. each error code,

4. all possible errors in one entry,

5. various typical cases,

6. various system parameters that affect the module, and

7. various user options that affect the module.

The test cases and results of integration tests will be documented and saved for

later use. These test cases can be used to determine if the program is operating as

designed.

2 .q-2

TESTS

2.4.4 System Tests

System testing is the activity of exercising the program utilizing all inputs in

various combinations. According to the concepts of structured programming and top-down

module integration, as the last module is integrated and tested, testing of the entire

program will be complete. However, tests will be conducted for:

1. the ANOPP control statement stream with no errors and composed of

a. simple sequences,

b. various typical combinations, and

c. worst case combinations;

2. the ANOPP control statement stream with errors, such as,

a. meaningless input,

b. no input,

c, stacked sets of input, and

d. errors;

3. all system parameters for

a. typical settings,

b. special cases,

c. worst cases, and

d. illegal values.

2.4-3

2.5 PUBLISHABLE DOCUMENTATION

STANDARDS

2.5.1 Types of Publishable Documentation

A program of ANOPP's magnitude requires clear and complete documentation to be of

value to users and programmers. Engineers and users must understand the available pre-

diction capabilities and know how to formulate a problem and'obtain a solution. Program-

mers must know how to install, modify, and add to the system. Such documentation will be

provided in four separate, indexed, stand-alone documents:

i. Programmer's Manual,

2. Theoretical Manual,

3. User's Manual, and

4. Demonstration Problem Manual.

2.5.1.1 Programmez.'s Manual

The Programmer's Manual will contain all coding information and specifications for

the Aircraft Noise Prediction Program. It will be w_itten for use by programmers to

install, execute, modify, and add modules to the program. As such, it will contain:

_. a detailed introduction that will describe the concepts and functions of ANOPP;

2. the standards for design, coding, testing, and program documentation to insure

compatibility and ease of maintenance;

3. description of data and tables;

4. executive, data management, utility, and functional module descriptions;

5. instructions for installation and operation;

6. instructions for modification and addition of modules to the system;

7. support program descriptions; and

8. easily updated index.

2.5.1.2 Theoretical Manual

The Theoretical (or methods) Manual will provide a concise mathematical description

of the methods employed in the computational or functional modules. It will describe the

2.5-1

STANDARDS

analytical or empirical methods and will outline the methods of solution, including all

implicit and explicit assumptions, limits of use and limits of accuracy. References to

published material should be included in the text and the index. A user can refer to this

manual to determine the engineering and mathematical methods that are available in the

program.

2.5.1.3 User's Manual

The User's Manual will be structured to accommodate the needs of different levels of

users. A user will employ this manual to formulate problems and anticipate results. The

manual will provide instructions and descriptions for the preparation of problem data and

explain how to invoke the various options provided for problem solution. The User's

Manual will thoroughly explain the Executive Control Language and general related capa-

bilities.

2.5.1.4 Demonstration Problem Manual

The Demonstration Problem Manual will contain detailed descriptions of sample problem

input and solutions. This manual will be utilized for user education and system valida-

tion. It will be beneficial to the engineer user and his programming staff.

2.5.2 Publishable Manual Preparation

2.5.2.1 General

ANOPP documentation will be typed on I0" x 13" mats that will be supplied by ANOPO.

These mats will be reduced to 90 percent of their original size during the printing

process.

Documents will be prepared using magnetic cards compatible with the equipment avail-

able to ANOPO. The equipment available to ANOPO is an IBM MAG Card II Typewriter, System

Model No. 6616; specifications: dual pitch word processing system.

The magnetic cards of the ANOPP manuals will be furnished to ANOP0 with an index to

facilitate cataloging and filing the cards.

2.5-2

PUBLISHABLE DOCUMENTATION

Computer printout used in the manuals must be clear and sharp. To ensure this, the

unlined side of the computer paper should be used and a new ribbon should be inserted on

the printer.

To change camera-ready manuscripts, correction tape is preferred over mortising

(i.e., cutting and pasting). Also, for one-letter corrections, a chalk-like substance may

be used. ERASURES AND OPAQUE WHITE CORRECTION FLUID ARE NOT ACCEPTABLE.

Minor modifications to pages of published ANOPP documentation will be communicated to

ANOPO by means of the Documentation Change Report (DCR).

The general format of the manuals will be:

i. Front Cover

2. Inside Cover Page

3. Preface

4. Table of Contents

5. Page Status Log

6. Text Body

7. References

8. Index

9. Back Cover

2.5.2.2 Spacing

Double-spacing will be used except where groups of a few single-spaced lines sepa-

rated by double-spacing for the groups is more desirable for clarity or appearance.

Paragraphs will be indented S spaces and will be separated from each other by 2½

lines. A line associated with an unnumbered, underlined explanatory heading will be

indented 5 spaces.

Section and subsection titles will be separated from the text (above and below the

title and from each other) by 3 lines.

, , ?

2.5.2.3 Section Numbering

STANDARDS

Major sections, i.e., those with one number, will be typed with all uppercase letters

and will be identified with a decimal classification, i.e., one number followed by a

period, as follows:

12. DOCUMENTATION

Major subsections, i.e., those with two numbers, will be typed with all uppercase

letters and will be identified with a decimal classification and two numbers, as follows:

12.2 MANUAL PREPARATION

Minor subsections, i.e., those with three numbers, will be typed with initial capi-

tals, underlined, and identified with a decimal classification and three numbers, as

follows:

12.2.5 Contents of Manual

Further subdivision of minor subsections will be typed with initial capitals, will

not be underlined, and will be identified with a decimal classification and four or more

numbers, as follows:

12.2.5.3 Text Printing

2.5.2._ Page Numbering and Running Headings

Major subsections will begin at the top of an odd-numbered page. (Odd-numbered pages

will be printed on the right and even-numbered pages will be printed on the left.) Other

units such as Data and Table Descriptions should begin at the top of a page where clarity

or convenience of use is thereby improved. In the case of large major subsections, minor

subsections may begin at the top of the next page.

Page numbers will be centered at the bottom of each page. The number will indicate

the major subsection identifier and page number within the subsection, separated by a

hyphen. Examples are:

6.1-1

2.5-*,,

PUBLISHABLE DOCUMENTATION

6.1-2

6.1-3

The numbers of pages changed at a later date will use the format of major subsection

identifier, hyphen, page number followed by the date of the change (mm/dd/yy), as follows:

6.1-I original page

6.1-2 (12/09/75) changed page

Pages inserted at a later date will be identified by the major subsection identifier,

hyphen, page number, decimal and number followed by the date of the insertion in the form

(mm/dd/yy), as follows:

6.1-1

6.1-2 (12/09/75)

6.1-2.1 (12/09/75)

6.1-2.2 (12/09/75)

6,1-3

original page

changed page

added page

added page

original page

If an odd number of pages is to be inserted, one blank page with a running header and

a page number should be added to ensure consistency. Such a blank page will contain the

following sentence: THIS PAGE HAS BEEN LEFT BLANK INTENTIONALLY.

Pages inserted at a later date between pages of insertions made subsequent to the

original issue will be identified by the major subsection identification number, hyphen,

page number, decimal, added page, decimal, inserted page and date as follows:

6.1-1

6.1-2 (12/09/75)

6.1-2.1 (12/09/75)

6.1-2,1.1 (01/10/76)

6.1-2.1.2 (01/10/76)

6.1-2.2 (12/09/75)

6.1-3

original page

changed page

added page

inserted page

inserted page

added page

original page

Running headers, in capitals, will be centered at the top of each page. The major

section name will be used as the running header on EVEN-NUMBERED PAGES, and the major

2.5-5

STANDARDS

subsection name will be used as the running header on ODD-NUMBERED PAGES. There is one

major exception to this rule: for the first page in every major subsection, the major

section name will be used as the running header. Care must be exercised in determining

running headers for pages to be inserted. For example, the page to be inserted between

6.1-3 and 6.l-q is 6.1-3.1 and is considered to be an even-numbered page for the purpose

of determining the running header. The reason for this is that 6.1-3.1, being printed on

the back of 6.1-3 (an odd-nun_bered page), is in effect an even-numbered page. A blank

"odd-numbered" page, 6.!-3.2, with subsection running header and page number must be typed

to insure consistency. This blank page will contain the following sentence: THIS PAGE

HAS BEEN LEFT BLANK INTENTIONALLY.

2.5.2.5 Equations

Equations will be numbered consecutively beginning with I for the first equation in

each major subsection. References to equations outside a major subsection must refer to

both the equation number and the major subsection number, i.e., See Section 5.6, Equation

12. If the reference is to another manual, the manual name (Theoretical Manual, User's

Manual, Programmer's Manual) will be given, i.e., See ANOPP Theoretical Manual, Section

5.6, Equation 12.

Equations will be centered on the line and separated from the text by three blank

lines. Equations will be punctuated as part of the text and will be identified at the

right-hand margin with its Arabic numeral equation number in parenthesis.

When a group of equations appears in succession without text between them, the

longest equation will be centered and the equal signs of the remaining equations will be

aligned with the equal sign of the longest equation.

The transpose operator for a matrix should be placed outside the brackets (i.e.,

[A] T is correct; [AT] is incorrect). The same rule applies tO the inverse operation

(i.e., [A] -I is correct; [A -I] is incorrect). All subscripts for matrices will be

lowercase letters (i.e., K99 , Kfs).

2.5-6

PUBLISHABLE DOCUMENTATION

All plus and minus signs in equations will be preceded and followed by one space.

There will be two spaces before and after all equal signs in equations. There will be no

spaces between parenthetical expressions. For example:

(A)(B)+ (D)= C

Equations inserted at a later date will be numbered as decimal parts of the preceding

equation. For example, two equations inserted between Equation 5 and Equation 6 will be

designated by Equation 5.1 and Equation 5.2, respectively. For more complicated cases,

follow the rules given in Section 2.5.2.4 of this document.

2.5.2.6 Tables, Figures, and References

Tables and figures will be numbered consecutively beginning with the first table or

figure in each major subsection. References to tables and figures outside a major subsec-

tion must refer to both the table or figure number and the major subsection number, i.e.,

See Section 5.6, Table 2. If the reference is to another manual, The manual name (ANOPP

Theoretical Manual, ANOPP User's Manual, ANOPP Programmer's Manual) will be given, i.e.,

See ANOPP User's Manual, Section 5.2, Table 2.

Table titles will be typed with initial capitals. Periods will follow the Arabic

table number and the end of the complete title as follows:

Table 3. This Is an Example of a Table Title.

Figure captions will be typed in lower case letters except for the first letter of

the first word. Periods will follow the Arabic figure number and the end of the complete

caption as follows:

Figure 4. This is an example of a figure caption.

Single line captions will be centered under the figure, and multiple-line captions will

be left-justified with the last line centered.

References will be listed at the end of each major section and will be numbered

consecutively beginning with I for the first reference in each major section.

Tables, figures, and references inserted at a later date will be designated by a

O_]_mber followed bye decimal and a number. For example, two figures inserted between

2.5-7

STANDARDS

Figure 2 and Figure 3 will be designated Figure 2.1 and Figure 2.2, respectively.

The words Equation, Figure, Reference, Section, and Table will be spelled out with

initial capitals when used either in the text or in a caption. The associated Arabic

numeral will not be enclosed in parentheses.

2.5.2.7 Capitalization

Data block names, module names, Data card names, entry point names, and FORTRAN

variable names will all be capitalized and the letter 0 will be slashed (_).

Care should be exercised in the use of initial capitals. Formal type names should be

capitalized throughout the manuals.

2.5.2.8 Punctuation

Commas will be used to separate the elements in a series and a co,_na will be placed

before the final conjunction.

For punctuation of potential executable statements, punctuation characters should be

representative of the actual coded statement.

2.5.3 Changes to Baseline Manuals

The four ANOPP manuals (Theoretical Manual, User's Manual, Programmer's Manual, and

Demonstration Problem Manual), delivered to ANOPO via paper, called mats, and IBM MAG Card

II compatible magnetic cards, constitute baseline documents. When information in a

baseline document is added, deleted, or changed, a formal w_itten update to the baseline

document is required.

To initiate a change to a baseline document, a Documentation Change Report (DCR) is

required and must be submitted to the maintenance organization. A DCR is shown in Figure

I.

The report will be reviewed by the maintenance organization and/or ANOPO for appro-

priateness and extent of change. Changes ¢o manuals can affect software. The results of

the reviews will consist of comments, required changes, and suggested changes as well as

' 2.5-8

Originator:

Organization:

Manual

PUBLISHABLE DOCUMENTATION

DCR No.

DCR No.

ANOPP DOCUMENTATION CHANGE REPORT (DCR)

Theoretical

User's

Programmer's

Demonstration

Description and reason of chan_e:

Date:

Phone No.:

Page

Numbers

(Attach a copy of the page(s) to be changed with corrections typed. Use separate pages if

necessary.)

Comments:

Editor

Approval

Date

ANOPP

Approval

Date

DPSL

Entry

Date

Change

Made

Date

ANOPO

Verif.

Date

Editor

Verif.

Date

DPSL

Entry

Date

Figure I. ANOPP DOCUMENTATION CHANGE REPORT (DC)

2.5-9

STANDARDS

rejection or acceptance of the change. If the change is unacceptable, the submitter will

be so informed and told what action must be taken prior to resubmission. If the change is

acceptable, the maintenance organization will be informed so the change can be incorpor-

ated into existing mats and magnetic cards. If the change affects software, a Software

Change Report (SCR) must be submitted with the DCR. If the change affects more than one

manual, those manuals and page numbers must be indicated in the COMMENTS of the DCR.

All changes will be rigidly controlled, reviewed, cataloged, accounted, and filed.

Documentation Page Status Logs (DPSL) will be maintained for and in each manual. A

Documentation Change Report Status Log will be maintained with the changes for each

manual. If a change affects more than one manual, it will be checked on the primary

Documentation Change Request Report Status Log by the DCR number.

2.5-10

EXECUTIVE MODULES

3.1 OVERVIEW

Chapter 3 provides a thorough description of the ANOPP system including labeled

common blocks, executive control structures, executive data base structures, the Executive

Management System (EM), Data Base Management System (DBM), Dynamic Storage Management

System (DSM), the Update Utility, and other general utilities.

The Executive Management System controls the execution of ANOPP from beginning to

end. The Executive Monitor (XM), described in Section 3.5.3, calls into execution the

eight phases of execution described in Section 3.5.4. The course of execution is de-

pendent on the control statements found in the Primary Input Stream. A complete descrip-

tion of these control statements is found in Section 3.5.2.

The Data Base Management System described in Section 3.6 provides ANOPP with a means

of storing and retrieving data on sequential and direct access storage devices. DBM

provides user callable routines for accessing and manipulating the data base structures

described in Section 3.4.

The Dynamic Storage Management System described in Section 3.7 provides ANOPP with a

means of getting and freeing various sized blocks of available core storage and making

them directly addressable by the requesting module. Many of the core-resident control

structures described in Section 3.3 are allocated and manipulated via functions of the

DSM.

The General Utilities described in Section 3.9 are a collection of general purpose

subprograms available for usage by all executive system routines. Most of the general
i

utility modules are also available for use by functional modules.

The UPDATE control statement is described under the Executive Management System but

is explained in more detail in Section 3.8. UPDATE provides a means of building a new

data unit either from an existing data unit used as a basis for modification or from one

or more data members on one or more data units.

3.1-1

3.2 LABELLED COMMON BLOCKS

EXECUTIVE MODULES

The FORTRAN data structure called labelled common is used in ANOPP implementation for

reasons of efficiency and security. It is efficient in terms of storage and execution

time for several modules that require access to a common set of parameters to share them

in common storage rather than continually passing them as arguments in lengthy calling

sequences. Security is maintained on a need to know basis by including the labelled

common statement in only those modules that share the requirements for availability of the

parameters.

All of the labelled common blocks used by the ANOPP executive system are described in

the following sections in terms of their primary purpose followed by a list of modules

that reference them.

3.2.1 /XBSC/

Common block /XBSC/ contains those variables used during the Initialization Phase by

XBS to initialize various executive system tables. For further description of the vari-

aLles in /XBSC/, see the prologue of Block Data XBSCBD.

Those Executive Modules which use /XBSC/ are:

XBS XBSCBD XFMANT

3.2.2 /XCAC/

Common block /XCAC/ contains variables used during the Secondary Edit Phase by XCA,

For further description of the variables in /XCAC/, see the prologue of Block Data XCACBD.

Those Executive Modules which use /XCAC/ are:

XCA XCABD XCABST XCACL¢ XCAI XCAMST

XCAMXX XCANCS XCANS XCANWC

3.2.3 /XCRC/

Common block /XCRC/ contains those variables used by XCR, the executive crack module.

For further description of the variables in /XCRC/, see the prologue of Block Data XCRCBD.

3.2-I

EXECUTIVE MODULES

Those Executive Modules which use /XCRC/ are:

XCR XCRCBD XCRCH XCAD@T XCRDR XCREF

XCREXP XCRFC XCRILL XCRPD XCRFH XCRPN

XCRP@T XCRREN XCRSEN XCRSNM XCRWC XCRWCH

3°2.4 /XCS/

Common block /XCS/ contains those variables used in processing or building control

statement records. For further description of the variables in /XCS/, see the prologue of

Block Data XCSBD.

Those Executive Modules which use /XCS/ are:

XAR XAT XBS XBSDBM XBSDSM XBSBCS

XCSBD XCSIL XCSL_G XCSP XCSPM XCSSL

XCT XDT XEX XEXA XEXL XFM

XFMANT XG_ XIF XLINK XMERR XMERRI
XMERRL XPA XPAVTB XPU XPUTP XRT

XRTAMU XRTBAD XPJLBCS XRTBLR XRTCAL XRTCSS

XRTDAT XRTI XRTLRF XRTLSE XRTSER XRTSEX

XRTSIF XRTSSS XRTSYN XRTU XRTVCS XSS

XTB XUN XUPADS k"JPCS XUPDIR XUPSRC

XUPSYN

3.2.5 /XCSFM/

Common block /XCSFM/ contains those parameters used by the Executive System Modules,

including those which maintain interface functions between the control statement stream

and the functional module. For further description of the variables in /XCSFM/, see the

prologue of Block Data XCSFMBD.

Those Executive Modules which use /XCSFM/ are:

XASKP XBS XBSSP XBSTP XCSFMBD XCSP

XCSST XEX XEXA XFAN XFMANT XGETP

XIF XPA XPAGE XPAVTB XPLAB XPLABQ

XPLINE XPUTP

3.2-2

LABELLED COMMON BLOCKS

3.2.6 /XCSPC/

Common block /XCSPC/ contains those variables during the Control Statement Processing

Phase by XCSP. For futher descriptions of the variables in /XCSPC/, see the prologue of

Block Data XCSPCBD.

Those Executive Modules which use /XCSPC/ are:

XAR XAT XCSIL XCSL_G XCSP XCSPBD

XCSPM XCSSL XCT XDR XDT XEX

XEXA XEXL XG_ XIF XMERR XMERRI

XMERRL XPA XPU XSS XTB XUN

XUPCS XUPLST XUPNEW XUPSRC

3.2.7 /XCVT/

Common block /XCVT/ contains general vamiables used by various Executive System

Modules. For further description of the variables in /XCVT/, see the prologue of Block

Data XCVTBD.

Those Executive Modules which use /XCVT/ are:

DSMERR ILSHFT IMASK IKSHFT ISHIFT MMBAME

MMBFSI MMBFST MMBFT8 MMCL@S MMCLSE MMGED

MMPFMT MMSAND MMSUD MMUHMD MMUPMD MMVTD

NUMTYP NWDTYP TMCL_S TMEDTB TMFTE TMMCPN

TMSTD TMT@PN XAR XASKP XAT XBS

XBSDBM XBSDSM XBSGCS XBSIN XBSSP XBSTP

XCA XCABST XCAT XCAMST XCAMXX XCANCS

XCANS XCANSP XCANWC XCATRA XCR XCRCF

XCRCH XCRD@T XCRDR XCRFC XCRILL XCRPD

XCRPH XCRPN XCRP@T XCRPS XCRSRD XCRWC

XCRWCH XCSCOS XCSCIL XCSP XCSPM XCSST

XCT XCDBDU XCDBMD XCTDU XCUTBD XDR

XDT XEX XEXA XFAN XFETOH XFM

XFMANT XFMDSM XFMMM XFMTM XGETP XIF

XM XMERR XMERRI XMPRT XPA XPAGE

XPAVTB XPK XPKM XPU XPUTP XRE

XRT XRTBAD XRTBCS XRTBLR XRTCAL XRTEND

XRTI XRTLRF XRT_BD XRTPIN XRTSIF XRTSYN

XRTU XRTVCS XST_RE XTB XTBERR XTRACE

XTIAL XTIFV XT2AL XT3FL XT3FV XT3IF

XT3LK XUN XUNALL XUNBGN XUNCCS XUNLUM

XUNPK XUNPKM XUP XUPADD XUPADS XUPALL

XUPCDT XUPCGP XUPCHG XUPCHI XUPCHS XUPCHX

XUPCIN XUPC¢S XUPCRY XUPCQD XUPCQT XUPCS

XUPDIR XUPECE XUPECI XUPINS XUPNEW XUPNMT

XUP_MS XUP_MT XUPPRE XUPSRC XUPSUM XUPSYN

XUPXCR XUPXFR XVNAME

f,_ -, , . ,, .,-.

3.2-3

EXECUTIVE MODULES

3.2.8 IXDBMC/

Common block /XDBMC/ contains those variables used by the Data Base Management

System (DBM). For further description of the variables in /XDBMC/, see the prologue of

Block Data XDBMCBD.

The Executive Modules which use /XDBMC/ are:

MMBAME MMBFSI MMBFST MMBFTI MMBFT8 MMBFT9

MMBMCI MMBMH MMCL@S MMCLSE MMCRMX MMD@MC

MMEDNM MMERR MMFEFB MMGED MMGEFB MMGET

MMGETE MMGETR MMGETW MMGNEW MMGNWE MMI_MC

MMMDMH MMNWR MM_PRD MM_PWD MM_PWS MMPFMT

MMP_SN MMPUT MMPUTE MMPUTR MMPUTW MMREW

MMRMD MMRMH MMRRS MMSAMD MMSFEI MMSKIP

MMSUD MMUHMD MMUPMD MMVBA MMVNM MMVUM

XAR XAT XBSDBM XCT XCTBDU XCTBMD

XCTDU XDBMCBD XDR XDT XFMMM XFMTQ

XPU XUN XUNALL XUNBGN XUNCCS XUNCpY
XUPADD XUPALL XUPCGP XUPCHG XUPNEW XUPXCR

XUPXFR

3.2.9 /XDSMC/

Common block /XDSMC/ contains variables required by the Dynamic Storage Management

System (DSM). For further description of the variables in /XDSMC/, see the prologue of

Block Data XDSMCBD.

Those Executive Modules which use /XDSMC/ are:

DSMB DSMC_N DSMDFB DSMERR DSMET DSMEUX

DSMF DSMFLB DSMG DSMGUB DSMI DSMIDS

DSML DSMQ DSMR DSMS DSMU DSMX
DSMXFB DSMIST XDSMCBD XFMDSM

3.2.10 /XDTMC/

Common block /XDTMC/ contains variables required by the Table Manager Module. For

further description of the variables in /XDTMC/, see the prologue of Block Data XDTMCBD.

Those Executive Modules which use /XDTMC/ are:

TMBLDI TMCL@S TMEDTB TMERR TMFTE TMGEN1

TMM_PN TM@PN TM@PNA TMSTD TMTABP TMTERP

TMT_PN XBSDBM XDTMCBD XFMTM XTB XTBADV

XTBAIV XTBLDI XTBPNC XTBVAR

3.2-4

LABELLED COMMON BLOCKS

3.2.1i /XP_TH/

Common block /XP_TH/ contains those variables used by the module XCRP_T and its

submodules. For further description of the variables in /XP_TH/, see the prologue of

Block Data XP_THBD.

Those Executive Modules which use /XP_TH/ are:

XCRD_T XCRDR XCREXP XCRFC XCRPH XCRP_T

XCRSRD XCRWCH XP_THBD

3.2.12 /XR_¢T/

Common block /XR@_T/ contains those variables used during the Primary Edit Phase by

XRT. For further description of the variables in /XR_T/, see the prologue of Block Data

×R_TBD.

Those Executive Modules which use /XR_T/ are:

XR@_TBD XRT XRTBAD XRTBCS XRTBLR XRTCAL

XRTCSS XRTDAT XRTEND XRTI XRTLRF XRTLSA

XRTLSE XRTPIN XRTRS XRTSER XRTSEX XRTSiF

XRTSSS XRTSYN XRTTC XRTU

3.2.13 /XSLF/

Common block /XSLF/ contains those variables used in creating and using sequential

library files. For further description of the variables in /XSLF/, see the prologue of

Block Data XSLFBD.

Those Executive Modules which use /XSLF/ are:

XSLFBD XUN XUNALL XUNBGN XUNCCS XUNCPY

XUNEND XUNLUH

3.2.14 /XSPT/

Common block /XSPT/ contains those Executive System Parameters which may be set by

the user via a SETSYS control statement. For further description of the variables in

/XSPT/, see the prologue of Block Data XSPTBD.

3.2-5

EXECUTIVE MODULES

Those Executive Modules which use /XSPT/ are:

XBS XBSSP XCA XCAMXX XCANCS

XCSP XMERR XRT XRTDAT XRTEND
XSPTBD XSS

XCANWC

XRTPIN

3.2.15 /XUPC/

Common block /XUPC/ contains those variables used by the UPDATE modules (XUP). For

further description of the variables in /XUPC/, see the prologue of Block Data XUPCBD.

Those Executive Modules which use /XUPC/ are:

XUP XUPADD XUPADS XUPALL XUPCDT XUPCGP

XUPCHG XUPCHI XUPCHS XUPCHX XUPCIN XUPC_S
XUPCPY XUPCQD XUPCQT XUPCS XUPDIR XUPINS

XUPLST XUPMLV XUPNEW XUPNMT XUP_MS XUP_MT

XUP_ST XUPPRE XUPRLV XUPSRC XUPSUM XUPSYN
XUPXCR XUPXFR

3.2-6

3.3 EXECUTIVE CONTROL STRUCTURES

EXECUTIVE MODULES

This section includes a graphical layout and a usage description of all primary

control structures used and referenced by executive modules. A control structure is a

table, a directory or any other information block which is core resident and not residing

on a data unit/member. An information block which is both core resident and data unit/mem-

ber resident is classified as a data base structure and is included in Section 3.4.

These control structures residing in core are generally addressable in two ways;

either as indexed arrays from 1 to n, or as a block of dynamic storage indexed relative to

the FORTRAN variable IX in system labelled common block /XAN@PF/ plus a positional offset

from the start of the block. The dynamic storage index is referred to generically in this

manual as the IDX of the block. See the following example which addresses the array TBL

from 1 to n or correspondingly the block IX(IDXTBL) plus 0 to n-i.

TBL(1) IX(IDXTBL+0)

TBL(2) IX(IDXTBL+I)

TBL(3) IX(IDXTBL+2)

TBL(n) IX(IDXTBL+n-I)

The positional offset constants 0 to n-I have been parameterized by using FORTRAN

variables containing constant values to reference offset table entries in many of the

ANOPP executive control structures.

3.3.1 System Table Types

Many of the tables and directories maintained by ANOPP system modules have a common

structure. This structure has two pamts, a preface and a body. The preface describes the

table's current status and the body contains the entries, which may be fixed or variable

length depending on the particular table definition. A table which has this common struc-

ture is designated as a System Table. Executive Utilities are available for performing

various functions for a System Table.

3.3-I

EXECUTIVEMODULES

Thereare three types of SystemTables. Thestructure of the three types are de-

scribed below.

3.3.1.1 SystemTableType1

Description: The System Table Type i structure provides for fixed length table

entries. Each entry made in the table requires the same number of words. The positions

of words in the preface and the first word beyond the preface have been parameterized by

variables in the common block /XCVT/.

Format:

Preface I

Body

name

nae

rice

le

entry i -

System Table Type 1

name
nae

nce

le

entry 1

entry i

entrYnc e

entrYna e

Position Common

Parameter Block

NTNAME

NTMAX

NTCUR

NTENT

NTSTRT

not used currently

name of table (Hollerith)

number of allocated entries (integer)

number of current entries (integer)

length of an entry in words (integer)

an entry of length le

/XCVT/

3.3-2

EXECUTIVE CONTROL STRUCTURES

The total length of a type 1 table is the sum of preface length and body length where

body length is the product of the number of allocated entries and the length of an entry.

For a type 1 table in dynamic storage at IDXTI, the expression for its length, LENT1,

would be:

LENT1 = NTSTRT + IX(IDXTI+NTMAX)*IX(IDXT!*NTENT)

3.3.1.2 System Table Type 2

Descriptign: The System Table Type 2 structure provides for variable length table

entries. The number of words required for an entry is not necessarily the same as any or

all of the other table entries. The user of this table structure must devise his own plan

to access the individual entries in the table, if there is more than one entry in the

table. The positions in the preface and the first word beyond the preface have been

parameterized similar to type 1 tables with the exception of the fixed length of an entry

which has no meaning for type 2 tables.

Format:

Preface

Body

name

naw

new

entry i

I

System Table Type 2

name

naw

ncw
not used

entrY 1

entry i

naw-ncw

Position Common

Parameter Block

NTNAME

NTMAX

NTCUR

NTSTRT

name of table (Hollerith)

number of allocated words in body (integer)

number of CU_Tent words in body (integer)

an entry of variable length

/XCVT/

3.3-3

EXECUTIVE MODULES

The total length of a type 2 table is the sum of preface length and body length where

body length is the number of allocated words. For a type 2 table in dynamic storage at

IDXT2, the expression for its length, LENT2, would be:

LENT2 = NTSTRT + IX(IDXT2+NTMAX)

3.3.1.3 System Table Type 3

Description: The System Table Type 3 is characterized by forward chained, fixed

length entries. These entries are linked into one of three chains -- the used entry

chain, the free entry chain, or the other entry chain. Each entry contains a chain

control word, which serves as a forward pointer to its successor in the chain, followed by

space reserved for the user's entry data. A chain control word whose value is zero

indicates the end of the chain. Each position in the preface plus the first word of the

first entry have been parameterlzed by variables in common block /XCVT/.

Free entries may exist anywhere in the body of the table, not necessarily the last

entry. The table can accommodate up to three chains.

Format:

Preface

Body

System Tabletype 3

i name

nae

cTl

le

uec_)

fecp

oecp

entry 1

entry i

ent'_Yna e

Position

Parameter

NTNAME

NTMAX

NTCUR

NTENT

NT3USD

NT3FRE

NT3_TR

NT3STR

Common

Block

/XCVT/

3.3-_

EXECUTIVE CONTROL STRUCTURES

name

nae

ctl

le

uecp

feep

oecp

entry i

name of table (Hollerith)

number of allocated entries (integer)

current table length in words (integer)

length of an entry (integer)

used entry chain pointer index to the first entry in the used

entry chain

free entry chain pointer index to the first entry in the free

entry chain

other entry chain pointer index to the first entry in the other

entry chain

entry of length le including the chain control word

The total length of a type 3 table is the sum of preface length and body length where

body length is the product of the number of allocated entries and the length of an entry.

For a type i table in dynamic storage at IDXT3, the expression for its length, LENT3,

would be:

LENT3 = NT3STR + IX(IDXT3+NTMAX)*IX(IDXT3+NTENT)

: 3.3-5

3.3.2 Active Member Directory (AMD)

EXECUTIVE MODULES

System Table Type: 3

Residence: Global Dynamic core; the IDX is IDXAMD in /XDBMC/ common block.

Primary Users: Data Member Manager and Data Table Manager open and close routines

(MM@PRD, MM@PWD, MM@PWS, MMCL#S, TM@PN, and TM@PNA) and XFMMM which logically closes

active members that remained open following termination of a functional module.

Description: The AMD is a table identifying all data members which are open to Data

Member Manager (MM) and provides a linkage to the NAME argument used to open a data member

and to the Data Unit Directory entry for the data unit named in the open member request.

Additionally, an AMD enZry indicates whether a data member is open for input, output, or

both, and if open for output, whether it is open for direct or indirect writing.

The AMD is allocated during ANOPP initialization and remains resident throughout an

ANOPP run. Expansion of the AMD occurs as required.

Format:

Preface

Body

entrYl I

entrY i

entrYna e

Active Member Directory

name

nae

ctl

le

uecp

fecp

oecp

entry
data

ccw

dmn
n

udp
dwf

ord

ol, r_

entw
data

Position Common

Parameter Block

(see system table type 3

preface)

IAMDMN

IAMUDP

IAMDWF

IAM_RD

IAM_WR

/XDBMC/

3.3-6

[

EXECUTIVE CONTROL STRUCTURES

CCW

dmn

udp

dwf

ord

owr

chain control word linking the entry into the free or used chain

Other chain is invalid for the AMD.

data member name (Hollerith)

Data Unit Directory entry pointer which is an index relative to

the beginning of the DUD

direct write flag

open read control word which contains the IDX of the NAME array

used if the data member was opened for reading via MM@PRD

open write control word which contains the IDX of the NAME array

used if the data member was opened for writing via MM@PWD or MM_PWS

Initialization: During ANOPP initialization XBSDBM creates the AMD using the follow-

ing variables:

i. The number of words of dynamic core initially allocated is determined using

the following formula:

LEN = NT3STR + NAEAMD*LENAME

NT3STR is a variable from /XCVT/ common block, and NAEAMD and LENAME are from

/XDBMC/ common block.

2. The AMD table preface is initialized as follows:

name

nae =

ctl =

le =

uecp =

fecp =

oecp =

IDAMD from /XDBMC/ common block

NAEAMD from /XDBMC/ common block

LEN which was computed in i. above

LENAME from /XDBMC/ common block

zero

NT3STR+I

zero

3o The body of the AMD is initialized in system table type 3 format using sub-

program XT31F.

Entry: An entry is made in the AMD each time a previously unopened data member is

opened via MM@PRD, MM@PWD, or MM_PWS.

Retrieval: The AMD used entry chain is searched each time a request to open a data

member occurs. If a matching entry is found and it is not open for the mode specified by

the open request, the entry is updated according to the mode (read or write) of the open

request.

The AMD is also searched by Data Table Manager when a data table is being opened to

prevent a data member from being open to both Data Member Manager and Data Table Manager.

ruOR QUAL. T

3.3-7

EXECUTIVE MODULES

Deletion: When a data member is closed for both input and output processing modes,

its AMD entry is cleared and linked into the free entry chain.

3.3-8

EXECUTIVE CONTROL STRUCTURES

3.3.3 Alternate Names Table (ANT)

System Table Type: i

Residence: Global dynamic core; the IDX is LANT in /XCSFM/ common block.

Primary Users: Data Member Manager, Data Table Manager, and the Parameter Main-

tenance Functions (XASKP, XPUTP, XGETP).

Description: The ANT is a table of reference names and corresponding alternate names

as specified on the EXECUTE CS. Alternate names exist only during the F.M. Processing

Phase when the specified F.M. is executed; at other times, the ANT is a null table.

Format:

Alternate Names Table

Position Common

Parameter Block

Preface

Body

enrrYl I

entrYncel

name

nae

rice

le

refname

altname

refname
ncA

altname
nce

(see System Table Type 1

Preface)

LANTN /XCSFM/

LANTA

refname - reference name specified on EXECUTE CS (Hollerith)

altname - corresponding alternate name specified on EXECUTE CS (Hollerith)

Initialization: ANT is allocated for zero entries during the Initialization Phase

(XBS) and is reinitialized for zero entries upon completion of the Functional Module

Processing Phase.

i. The number of words of dynamic core initially allocated is determined by:

LEN = NTSTRT

NTSTRT is a variable from /XCVT/ common block.

• 3.3-9

EXECUTIVE MODULES

2. The ANT preface is initialized as follows:

name = NAMANT from /XBSC/ common block

nae = NAEANT from /XBSC/ common block

nce = NCEANT from /XBSC/ common block

le = LEANT from /XBSC/ co,on block

Entry: When an EXECUTE control statement is processed during Control Statement

Processing Phase, the ANT is allocated in GDS for exact number of entries required. An

entry for each reference/alternate name specified is made and the values for nae and nce

are updated.

Retrieval: Utility XFAN (fetch alternate name) provides retrieval. MM and TM user

calls and the utilities XPUTP, XASKP, and XGETP retrieve alternate names automatically On

each call.

Deletion: All entries deleted upon completion of the functional module specified on

the EXECUTE control statement by the XFMANT module.

3.3-10

EXECUTIVE CONTROL STRUCTURES

3.3.4 Data Table Directory (DTD)

System Table Type: 3

Residence: Global dynamic core; the IDX is IDXTD in /XDTMC/ common block.

Primary Users: Data Member Manager and Data Table Manager open and close modules

(MMOPRD, MM@PWD, MM@PWS, TM_PN, TMOPNA, TMCL_S) and XFMTM which logically closes data

tables left open following termination of a functional module.

Description: The DTD identifies all data tables, both open and closed, which are

core resident at any point in time during an ANOPP run. A DTD entry contains a data unit

and data member name, which uniquely identify a data table, and an IDX variable which is

used in the following two ways:

i. When a data table is open, the IDX variable contains the IDX to the NAME

argument used in opening the table and the third word of the NAME argument

contains the IDX to the data table.

2. When a data table is closed, the IDX variable contains the IDX to the

data table.

The DTD is allocated during ANOPP initialization by XBSDBM and remains resident until

the ANOPP run completes. The DTD cannot be expanded dynamically and therefore ANOPP will

terminate abnormally if the user tries to simultaneously open more data tables than there

are entries in the DTD.

3.3-11

EXECUTIVE MODULES

FormaT:

Preface

Body

entry/

entry i

enlrYna e

Data Tab.le Directory

name

nae

ctl

le

oecp

fecp

cecp

entry

data

I ccw

dun

dmn

idx

I entrydata

Position Common

Parameter Block

(See System Table Type 3

Preface)

ITEDUN

ITEDMN

ITEIDX

/NDTMC/

oecp - open entry chain pointer index To the first entry in The open entry chain

fecp - free entry chain pointer index to The first entry in the free entry chain

cecp - closed entry chain pointer index to the first entry in the closed entry

chain

There are Three entry chains in the body of the DTD; The "open" entry chain, the

"free" entry chain, and the "closed" entry chain. Entries in the open entry chain contain

the following entry data:

ccw - chain control word linking the entry into the open chain

dun - name of the data unit on which the data table resides

dmn - name of the data member which contains the data table

idx - index, relative to /XAN_PP/ common block, of the NAME argument

used in opening the data Table

Entries in the free entry chain have only a chain control word and the entry data is

Z el'_o.

' 3.3-12

EXECUTIVE CONTROL STRUCTURES

Entries in the closed entry chain contain the following entry data:

ccw- chain control word linking the entry into the closed entry chain

dun - as described previously

dmn - as described previously

idx - index, relative to /XAN_PP/ common block, of the data table which

is located in global dynamic core

Initialization: During ANOPP initialization, XBSDBM creates the DTD using the

following:

i. The number of words of dynamic core initially allocated is determined using

the following formula:

LEN = NT3STR + NAETD _ LENTDE, where

NT3STR is a varible from /XCVT/ common block, and NAETD and LENTDE are from

/XDTMC/ common block.

2. The DTD preface is initialized as follows:

name = from IDTD in /XDTMC/ common block

nae = from NAETD in /XDTMC/ common block

etl = from LEN computed in i. above

le = from LENTDE in /XDTMC/ common block

oecp = 0

fecp = 1 + NT3STR

cecp = 0

Entry: A new entry is made in the DTD when a data table which is not currently in

the open entry chain or the closed entry chain is opened.

Retrieval: Entries are retrieved from both the open and closed entry chains by Data

Table Manager (DTM) open and close modules. The DTM open data table modules (TM_PN,

TM_PNA) link DTD entries from the closed entry chain into the open entry chain and the

close data table module (TMCL_S) links from the open to the closed entry chain.

Deletion: Data Member Manager (DMM) open data member modules (MM_PRD, MM_PWD, and

MM_PWS) also search the open and closed entry chains in the DTD for a data table residing

on a particular data unit and member. However, if DMM finds an entry, either the DMM

module involved abnormally terminates ANOPP if the entry is in the open entry chain or it

frees the data table from core and links the DTD entry from the closed to the free entry

chain.

'3.3-13

EXECUTIVE MODULES

3.3.5 Data Unit Directory (DUD)

System Table Type: 3

Residence: Global dynamic core; the IDX is IDXUD in /XDBMC/ common block.

Primar[Users: All DBM control statements, the UPDATE control statement, all Data

Member Manager modules, and Data Table Manager open data table modules.

Description: The DUD identifies all data units which are available to ANOPP at any

one time during ANOPP execution. A DUD entry contains a copy of the data unit header for

the unit, an IDX linkin_ the entry to the external file information table and buffer, and

other identification and contmol information.

The DUD is allocated during ANOPP initialization by subprogram XBSDBM and remains

resident until ANOPP termination. The DUD must be one of the control structures allocated

at the beginning of global dynamic core and may not be expanded. This insures that the

DUD does not move during DSM consolidation of global dynamic core.

3.3-1_

EXECUTIVE CONTROL STRUCTURES

Format:

Preface

Body

entry data:

CCW -

nwa -

wa

len -

dun -

efn -

cbi -

pbl -

omc

entrYl I

entry i

entrYnael

Data Unit Directory

name

nae

ctl

le

uecp

fecp

oecp

entry

data

cow

id

af

nwa

wa

len

dun

efn

cbi

pbi

omc

dwf

entry

data

Data Chart

Header

Data Unit

Control

Info.

Position Common

Parameter Block

(See System Table Type 3

Preface)

IUHID

IUHAF

IUHNWA

IUHMDA

IUHMDL

IDUDUP

IDUEFN

IDUCBI

InUPBI

IDUOMC

IDUDWF

/XDBMC/

chain control word linking the entry into the free or used chain.

The other chain is invalid in DUD.

Data Unit Header identifier (Hollerith)

integer ARCHIVE flag, if equal to zero, write is permitted on The

data unit. If equal to i, then writing is not permitted.

integer next word address that is available for writing on the data

unit

integer word address of the Data Member Directory on the data unit

integer length (in words) of the Data Member Directory

data unit names used for the data unit in the current ANOPP run

external file name assigned To the data unit by The operating system

the IDX to The external file information and buffer in global dynamic

core

the "previous buffer index" contains the value of cbi from the previous

I/O operation. It is used to determine if The IDX to the buffer has

been changed since the last I/O operation

integer open member count; indicating The number of data members

currently open on The data unit

....O;i-:':;-

3.3-15

dwf

EXECUTIVE MODULES

integer direct write flag which indicates that a data member is open

to write directly on T_e unit

Initialization: During ANOPP initialization, subprogram XBSDBM creates the DUD using

the following:

l, The number of words of dynamic core initially allocated is determined using

the formula:

LEN = NT3STR , NAEUD _ LENUDE, where

NT3STR is a variable from /XCVT/ common block, and NAEUD and LENUDE are from

/XBDMC/ common block.

2. The DUD preface is initialized as follows:

name = from IDUD in /XDBMC/ common block

nae = from NAEUD in /XDBMC/ common block

ctl = from LEN computed in 1. above

le = from LENUDE in /XDBMC/ common block

uecp = 0

fecp = NT3STR + 1

oecp = 0

3. The body of the DUD is initialized using subprogram XT3IF which builds the

free entry chain.

Entry: A new entry is made in The DUD whenever a CREATE, ATTACH, or L@AD control

statement is processed. Also, use of Data Member Manager's (DMM) open for indirect

writing facility causes creation of a temporary entry in the DUD for each data member

opened.

Retrieval: The DUD is searched each time a DBM con%col statement, an UPDATE or a

Data Table Manager open or close request is processed. Also, when a data member is open

indexes to the related DUD entry (or entries if open for indirect write) are retained in

the member's AMD entry and MCB. These indexes are used to directly access the DUD entry

for all DMM input and output processing.

Deletion: Entries ape deleted from the DUD by the DETACH and PURGE control state-

ments, and, when a data member which was open for indirect writing is closed, its temporary

(scratch) data unit is pumged and The DUD entry is deleted.

3.3-16

EXECUTIVE CONTROL STRUCTURES

3.3.6 Member Control Block (MCB)

System Table Type: Not applicable

Residence: Global dynamic core; the IDX is the third word of the NAME argument used

in opening the data member.

Primary Users: Data Member Manager Modules.

Description: The MCB is the primary control structure used in building and accessing

data members. It provides indexes to the Data Unit Directory and Active Memory Directory

entries which relate to the data member and control information regarding current record

being read or written and position within record. In addition, it contains the Data

Member Header, Record Directory, and one Record Subdirectory.

The MCB is allocated when a data member is opened and is resident until the member is

closed. Reallocation of the MCB takes place only when opening a data member for reading.

Expansion is required then to provide space for a Record Subdirectory.

Format:

Member

Control

Information

Data IMember

Header

Record |

Subdirectory |

len

indud

inamd

inrd

inrs

crn

_wc

infst

wadmh

(see Data Base

Structures)

(see Data Base

Structures)

The MCB consists of three separate structures which are necessary to control member

data input and output:

i. Member Control Information (MCI)

2. Data Member Header (DMH), and

3. RecoPd Subdirectory (RS).

9,,3.3-17

EXECUTIVE MODULES

Since the DMH and RS are discussed in the Data Base Structures section, only the MCI

is described here.

MCI:

id

len

indud

inamd

inrd

inrs

crn

rwc

infst

wadmh

- MCB identifier (Hollerith)

- integer length (in words) of the MCB

- index, relative to the beginning of the DUD, to the DUD entry

describing the data unit to which the data member belongs

- index, relative to the beginning of the AMD, to the AMD entry

for the data member described by the MCB

- index, relative to the beginning of the Master Record Directory

(RD), to the RD entry for the Record Subdirectory (RS) current

in the MCB

- index, relative to the beginning of the RS, to the RS entry for

the current data record

- integer current record number; MMSKIP and MMP_SN modify this field

to provide random accessing of data

- record word count; this field is used to determine the current

position within a record for partial record gets and puts. It

contains the count of the number of words transferred to or from

a record

- FST index is used for element gets and puts (MMGETE and MMPUTE) to

retrieve element type and length from the Format Specification Table

(FST) in the DMH

- integer word address of the DMH, provides MMCL@S with the address

at which the DMH is to be written if the member is open to write,

or zero if its open to read

Initialization: Not applicable

Entry: Not applicable

Retrieval: The MCB is accessed and modified during every DMM operation.

Deletion: Not applicable

3.3-18

EXECUTIVE CONTROL STRUCTURES

3.3.7 Member Description Blocks Table (MDBT)

System Table Type: 3

Residence: Global dynamic storage; the IDX is MXMDB in /XCS/ common block.

Primary Users: XRT module (Primary Edit Phase) to initialize an entry for an Mxxx

name assigned corresponding to a CALL control statement. XRT also constructs the M001

member and puts the MDB in executable format.

XCA module (Secondary Edit Phase) to initialize entries as Mxxx names are assigned

and to construct the M×xx for the CALL being executed and put the corresponding MDB in

executable format.

Description: Contains a Member Description Block (MDB) entry for each Mxxx type data

member for which an Mxxx name has been assigned. Each entry contains pertinent informa-

tion about the member, such as member name, number of current CS record in execution, Mxxx

that called this Mxxx, maximum length of a CS record, length of label record. The MDB

settings indicate if the Mxxx member has been constructed and exists on XSUNIT.

Format:

Preface

Body

entry 1

(M001)

entry i

(Mxxx)

entrYnc e

(Mxxx)

Member Description Blocks Position Common

Table Parameter Block

name

nae

nee

le

I entry
data

nm

cr

ell

csrl

it1

entry

data

(See system table type

1 Preface)

MNAME

_UR

MCALL

MRL

MLL

/×CS/

% 3.3-19

EXECUTIVE MODULES

entry data:

First entry:

nm M001 - name of root member (Hollerith)

cr number of current CS record in execution

cll - entry not applicable to M001

csrl - maximum length of a CS record for MO01

irl number of words in label record for MO01

Subsequent entries:

nm - name of' Mxxx data member (Hollerith)

cr - number of current CS record in execution

cll - name of Mxxx data member that called this Mxxx member in current

execution

csrl - maximum length of a CS record for Mxxx

irl - number of words in label record for Mxxx

Initialization: The MDBT is allocated and the MDB entry for the M001 member is

initialized by XBS.

l, The number of words of dynamic core initially allocated is determined using

the formula:

NWDS = LPREF + NA_DB _ LEMDB, where

LPREF, NAEMDB, LEMDB are in /XBSC/ common block.

2. The MDBT is initialized as follows:

name = NAMMDB from /XBSC/ common block

nae : NAEMDB from /XBSC/ common block

nce = NCEMDB from /XBSC/ common block

le = LEMDB from /XBSC/ common block

entrYl:

nm = NM001 from /XBSC/ common block

cr : 0

cll = blank

csrl = 0

irl = 0

Entry: The M001 MDB entry is put into executable format during the Primary Edit

Phase by XRT. The csrl and irl values are entered for MOO1 by XRT when MOO1 is built.

Member Description Block entries for other Mxxx members ame added to the MDBT as Mxxx

member names are assigned duping the Prlmamy and Secondary Edit Phase whenever a CALL

control statement is edited. When the MDB is added, nm is defined as the Mxxx name

assigned, cll the Mxxx calling member, and all other entries are set to zero (entry put

into initialized format). The csrl and iml values will be entered in the MDB (entry put

': 3.3-20

EXECUTIVE CONTROL STRUCTURES

into executable format) the first time the CALL control statement is executed since the

Mxxx member is built on the first execution.

Retrieval: Upon entry to the CS Processing Phase (XCSP), the maximum CS record

length and label record length are retrieved from the MDB for the Mxxx member in current

execution. These lengths are used to allocate LDS blocks for storing CS records and the

label record for the Mxxx in current execution. XCSP also retrieves the number of the

current CS record in execution from the MDB for the Mxxx in current execution, and uses

that value in positioning to the next CS record to be executed. Upon completion of

execution of an Mxxx member, XRE processes the RETURN CS and redefines the Mxxx member in

current execution as the calling member name found in MCALL of the MDB for the curTent

Mxxx.

Deletion: Once an MDB entry is made in the MDBT it is never deleted.

ORIGINAL PAGE I_

OF pOOt_ Q_jALITY_
3.3-21

EXECUTIVE MODULES

3.3.8 Sequential Library File Directory (LFD)

System Table T_pe: 1

Residence: Global dynamic core; the IDX is IDXLFD in /XDBMC/ common block.

Primary Users: UNLOAD (XUN), L_AD (XLD), and DR_P (XDR) control statements.

Description: The LFD is a table of sequential library file names that is used by the

UNLOAD, L_AD, and DR_P control statements to insure the integrity of sequential libraries

created or used in a particular ANOPP run. Initially allocated during system initializa-

tion, the LFD is resident throughout an ANOPP run and is expanded whenever all allocated

entries are in use and additional entries are required. Entries in the LLT are sorted in

ascending binary sequence by data member name within data unit name.

Format:

Preface

Body

Entry I

EntrYcn e I

EntrYnae I

Sequential Library File Position Common

Directory Parameter Block

id

nae

cne
le

ifn

ifn

entr-] data:

lfn - sequential library file name

(See system Table Type 1
Preface)

LFDEFN /XEBMC/

3.3-22

EXECUTIVE CONTROL STRUCTURES

Initialization: During ANOPP initialization, XBSDBM creates the LFD using the

following variables:

I. The number of words of dynamic core initially allocated is determined using

the formula:

LEN = NTSTRT + NAELFD * LENLFE, where

NTSTRT is a variable from /XCVT/ common block, and NAELFD and LENLFE are

from /XDBMC/ common block.

2. The LFD table preface is initialized as follows:

id = IDLFD from /XDBMC/ common block

nae = NAELFD from /XDBMC/ com_non block

cne = zero

le = LENLFE from /XDBMC/ common block

3. The body of the LFD is set to zero.

Entry: A new LFD entry results when a unique library file name is encountered in

processing a L_AD or UNLOAD control statement.

Retrieval: Entries are sequentially retrieved from the LFD by UNLOAD, L_AD, and

DRZP to establish the existence or non-existence of a library file name and their re-

spective control statements.

Deletion: Entries are deleted from the LFD by the DR_P control statement.

3.3-23

3.3.9

EXECUTIVE MODULES

Sequential Librar[Load Table (LLT)

System Table T[pe: 1

Residence: Local dynamic core; the IDX is IDXLLT in IXSLF/ common block.

Primary Users: L@AD (XLD) control statement.

Description: The LLT is a table of data unit and data member names which is used to

control loading and renaming of data unit and members from a sequential library file.

Since the LLT is local dynamic core resident, its life span is limited to each period of

XLD execution. Expansion occurs at the rate defined by NEXPND in /XCVT/ common block when

additional table entries are required.

Format

Sequential Library Position Common

Load Table Parameter Block

Preface

Body

Entry I

EntrYnc e

EntrYna e

id

nae

nce

le

I entrydata

odu

odm

ndu

ndm

I entrydata

(See system table type 1

Preface)

LLDODU

LLDODM

LLDNDU

LLDNDM

/XSL£/

entry data:

odu - old data unit name

odm old d_za member name

ndu - new d_a unit name

ndm - new data member name

3.3-24

EXECUTIVE CONTROL STRUCTURES

Initialization: The LLT is defined at the beginning of XLD execution by subprogram

XLDBGN using the following variables:

i. The number of words of dynamic core initially allocated is determined using

the formula:

LEN = NTSTRT + NAELLT * LENLTE

NTSTRT is defined in /XCVT/ common block, and NAELLT and LENLTE are defined

in /XSLF/ common block.

2. The LLT table preface is initialized as follows:

id = IDLLT from /XSLF/ common block

nae = NAELLT from /XSLF/ common block

nce = zero

le = LENLTE from /XSLF/ con_non block

3. The body of the LLT is initially set to zero.

Entry: An entry is made in the LLT for each data unit and data member named on the

L@AD control statement, or, if none were named, for each data unit name in the Library

Directory Record in the sequential library file (see Subsection 3.4.5.2). If a data unit

or member is renamed on a L_AD control statement then its new name is entered along with

the old, otherwise the old and new names will be the same.

Retrieval: Entries are retrieved serially from the LLT as the data units to which

they refer are identified and loaded from a sequential library file by subprogram XLD.

The new data unit and member names will be used to create the data member.

Deletion: Entries are not deleted from the LLT.

3.3-25

3.3.10

EXECUTIVE MODULES

Sequential Librar[Unit Table (LUT)

System Table T_2e: 1

Residence: Local dynamic core; the IDX is IDXLUT in /XSLF/ common block.

Primary Users: L@AD (XLD) control statement.

Description: The LUT is a table of data unit names with their related external file

names (EFN). It is used to validate their uniqueness against the Data Unit Directory

(UD), (see Subsection 3.3.4) and to create UD entries for the data units being loaded.

Allocation of the LUT is done by XLDBGN at the beginning of XLD execution and expan-

sion will occur if the number of unique data units being loaded exceeds the number of

allocated entries. Prior to termination, XLD frees the LUT from local dynamic core.

Format:

Sequential Library Position Common

Unit Table Parameter Block

Preface

Body

EntrYl I

EntrYnce I

EntrYnae I

entry data:

dun - data unit name

efn - external file name

id

nae

nce

le

entr_

data

dun

efn

entry

data

(see system table type i

Preface)

LUTDUN /XSLF/

LUT_N

3.3-26

EXECUTIVE CONTROL STRUCTURES

Initialization: During XLD initialization, XLDBGN creates the LUT in local dynamic

core using the following variables:

i. The number of initially allocated words of dynamic core is determined using

the formula:

LEN = NTSTRT + NAELUT * LENUTE, where

NTSTRT is defined in /XCVT/ common block, and NAELUT and LENUTE are defined

in /XSLF/ common block.

2. The LUT table preface is initialized as follows:

id = IDLUT from /XSLF/ common block

nae = NAELUT from /XSLF/ common block

nce = zero

le = LENUTE from /XSLF/ common block

3. The body of the LUT is initially set to zero.

Entry: An entry is made in the LUT for each new data unit name encountered on the

L@AD control statement, or, if all data units are to be loaded, the names of all data

units defined in the Library Directory Record (see Subsection 3.4.5.2) from the sequential

library file.

Retrieval: Entries are retrieved serially from the LUT and ape used by XLDCDU to

create Data Unit Directory entries (see Subsection 3.3.4) prior to the loading of data

members.

Deletion: Entries are not deleted from the LUT, but the LUT itself is removed from

core when processing is complete.

J% _L&

3.3-27

EXECUTIVE MODULES

3.3.11 User Parameter Table (UPT)

System Table Type: 1

Residence: Global dynamic core; the IDX is LUPT in /XCSFM/ common block.

Primary Users: EM modules XPA (entry), XPA, XIF (retrieval). Utilities XPUTP

(entry), XGETP, XASKP (retrieval).

Description: The UPT is a table of user parameters established in the control

statement stream by the PARAM control statement or in a functional module by the Parameter

Maintenance Function XPUTP. The parameter values are numerical, logical, or character

string values which are maintained in the User Parameter Table or the User String Table.

Valid UPT Table Entries:

Type Code Type Value Length (words)

1 Integer 1

2 Real Single
Precision 1

3 Real Double

Precision 2

6 Logical 1

-n string of n (n+7)/8

char (A8)

The fixed length table entry of four words is provided as the maximum length required

for all implemented types except character strings with more than 16 characters. These

character string values having more than 16 characters are maintained in the User String

Table, and the UPT value entry points to the UST entry. Complex and complex double values

have not been provided for in the UPT.

Once a user parametem has been established in the UPT, it may be subsequently re-

trieved or changed in the control statement stream or in a functional module. The table

entries remain throughout ANOPP. Once established, an entry is never deleted from the set

of known parameters. The user parameters provide a link in the communication between the

control statement stream and a functional module.

3.3-28

EXECUTIVE CONTROL STRUCTURES

Format:

User Parameter Table

name

nae

nce

le

I entr-ydata

type

val/ptr

I entrydata

Position Common

Parameter Block

Preface

entry 1

Body entrYnc e

entrYna e

entry data:

(see system table type i

Preface)

LUPTN

LUPTT

LUPTV

/XCSFM/

nm

type

val

ptr

- name of user parameter

- integer type code (valid types are i, 2, 3, 6, -n)

- if (type .GT.0) or (type=-n and n.LE.16) then value is located in

one or two words as required

- if type = -n and n.GT.16 pointer to position in UST of the string

relative to start of UST.

Initialization: During the ANOPP Initialization Phase (XBM) the UPT is created using

the following: _

i. The number of words of dynamic core initially allocated is determined using

the formula:

NWDS = LPREF + NAEUPT * LEUPT, where

LPREF, NAEUPT, and LEUPT are in /XBSC/ common block.

2. The UPT is initialized as follows:

name = NAMUPT from /XBSC/ corm_on block

nae = NAEUPT from /XBSC/ common block

nce = NCEUPT from /XBSC/ common block

le = LEUPT from /XBSC/ common block

3.3-29

EXECUTIVE MODULES

Entry: Entry is made in the CS Processing Phase by PARAM CS or in the Functional

Module Processing Phase by XPUTP. If table becomes insufficient for further entries, GDS

block size can be expanded via DSMX by a factor of NEXPND (/XCVT/ common block).

Retrieval: Retrieval from UPT accomplished in the CS Processing Phase by the PARAM

and IF control statements or in the Functional Module Processing Phase by the Parameter

Maintenance Functions XGETP and XASKP.

Deletion: Once established in the UPT, a parameter is never deleted from the set of

known user parameters. There is, therefore, no need for consolidation or reuse of free

space.

3.3-30

EXECUTIVE CONTROL STRUCTURES

3.3.12 User String Table (UST)

System Table Type: 2

Residence: Global dynamic core; the IDX is LUST in /XCSFM/ common block.

Primary Users: EM modules XPA (entry), XPA, XIF (retrieval). Utilities XPUTP

(entry), XGETP (retrieval).

Description: The UST is a table of the user parameter values which are character

strings having more than 16 characters. Entries to this table are made through the

control statement stream by the PARAM control statement or in a functional module by the

Parameter Maintenance Function XPUTP. A UST entry is associated with an entry in the User

Parameter Table (UPT) which names the user parameter, gives its type code (-n) and points

to the start of the value entry in the UST.

The number of words required in the UST for the character string is implied by the

integer type code in the corresponding UPT entry. Once an entry has been made in the UST,

it subsequently may be retrieved or changed in The control statement stream or in a

functional module. If the current character string value is being changed and the new

value is (a) a type other Than character string, (b) a character string with 16 or fewer

characters, or (c) a character string requiring more words than The current value, then

the current entry in the UST is "delinked" as the pointer in the UPT is changed or over-

written with a value. There is no reuse of the "delinked" character string value or its

space in the table. A new entry into the UST always begins at the next available word.

Assuming that NC is the number of characters in the character string, then ABS(NC)/NCPW =

Q + R (NCPW = nuraber of characters per word). The Q words are copied to The UST. Word Q

* 1 contains the R characters, left justified, blank-filled.

Otl.IG'fl_A_J pAGE IS

OF POOR QUALt_

3.3-31

Format:

Preface

Body

entry I {

entrYncw {

entrYnaw {

EXECUTIVE MODULES

User String Table

name

naw

ncw

(not used)

characters

characters

characters

Position Common

Parameter Block

(See system table type 2
Preface)

entry data:

characters - character string (AS)

number of words is implied by the integer type code in the

corresponding UPT entry.

Initialization: During the ANOPP Initialization Phase (XBM) the UPT is created using

the following:

i. The number of words of dynamic core initially allocated is determined using

the formula:

NWDS = NPREF + NAWUST, where

LPREF and NAWUST are in /XBSC/ common block.

2. The UST is initialized as follows:

name = NAMUST from /XBSC/ common block

haw = NAWUST from /XBSC/ common block

ncw = NCWUST from /XBSC/ common block

Entry: Entr,y is made in the CS Processing Phase by the PARAM control statement or in

the Functional Module Processing Phase by XPUTP. If the table becomes insufficient for

fumther entries, GDS block size can be expanded via DSMX by a factor of NEXPND (/XCVT/

common block).

3.3-32

EXECUTIVE CONTROL STRUCTURES

Retrieval: Retrieval from UST is accomplished in the CS Processing Phase by the

PARAM and IF control statements or in the Functional Module Processing Phase by the

Parameter Maintenance Function XGETP.

Deletion: Deletion from the UST is a result of the following situation. The current

length of the user parameter character string is n where n is greater than 16, and the

value is to be changed to one of the following:

i. character string with 16 or fewer characters

2. a type other than character string

3. a character string with more than 16 characters which will not fit

in the currently allocated UST entry.

The current entry in the UST is "delinked" by the pointer in the UPT entry being

changed or overwritten with a value.

ORIGFNAL PAGb2 IS

I)F POOR QUALITY
3.3-33

EXECUTIVEMODULES

3._ EXECUTIVEDATABASESTRUCTURES

This section includesa graphical layout anda usage description of all data base

structures used and referenced by executive modules.

A data base structure is a table, a directory, or any other information block which

resides on a data unit or external file. The general organizational structure of a data

unit and a data member are also included as data base structures.

3.4-1

3.4.1 Data Unit

EXECUTIVE MODULES

A Data Unit is the highest level of the ANOPP DBM data structure that can be refer-

enced directly using ANOPP control statements. It is physically stored on direct access

storage devices and is uniquely identified within an ANOPP run by a data unit name.

Since a data unit resides on a file which is identifiable outside the ANOPP system,

its data unit name may be changed from one ANOPP run to another by relating a new data

unit name to the same external file name.

3.4.1.1 Data Unit Structure

Residence: Random Access Secondary Storage Devices

Primary Users: Data Base Manager (DBM)

Description: A data unit is a set of data members which is assigned via DBM to an

external file defined by the host computer operating system. It contains a Data Unit

Header (DUH) and Data Member Directory (DMD) which contain the information necessary to

access and add data members.

Format:

Data Unit Structure

DUH

DMD

optional

data members

i

Initialization: When initially created, a data unit contains only the DUH and DMD.

3.4.1.2 Data Unit Header (DUH)

Residence: Data Units

Primary Users: Data Base Manager (DBM) Subprograms

3. b,-2,

EXECUTIVE DATE BASE STRUCTURES

Description: The DUH serves as both a control structure and a data base structure.

Although it primarily resides on data units, during ANOPP execution a copy is retained in

the Data Unit Directory entry for each data unit.

The DUH contains the information required to access the Data Member Directory (and

thereby all data members) and the address of the next word that is available for output.

Also, the DUH contains the Archive Flag which can logically inhibit outputting to a data

unit.

Format:

Data Unit Header

id

arflg

nwa

mda

md!

Position Common

Parameter Block

IUHID

IUHAF

IUHNWA

IUHMDA

IUHMDL

/XDBMC/

id - data unit header identifier

arflg - unit archive flag

nwa - next write address

mda - data member directory address

mdl data member directory length

Initialization: When first generated via execution of a CREATE control statement or

a call to XCTDU, the DUH has the following values:

id = IDUH from /XDBMC/ common block

arflg = 0

nwa = LENUH+I where LENUH is from /XDBMC/ common block

mda : nwa

mdl = 0

Following creation and output of a Data Member Directory, the mdl field will be equal

to the DMD length and the nwa field will equal mda+mdl.

3.4.1.3 Data Member Directory (DMD)

System Table Type: 1

Residence: Data Units

Primary Users: DBM CREATE cont-eol statement, Data Member Manager open read (MM@PRD),

and close write (MMCL_S) requests.

3.4-3

EXECUTIVE MODULES

Description: The DMD identifies all data members which are written to its data unit

and contains the word address and length of each Data Member Header (DMH). When a data

member is opened for reading, MM@PRD searches the DMD for the name of the data member. If

the data member is found, its DMH address and length are used to read the DMH into the

Member Control Block. When a data member that was opened to write is closed an enYry is

made (or updated) for it in the DMD.

Format:

Data Member Directory

Position Common

Parameter Block

Preface

Body

entry I {'

entrYi I

entrYna e

id

nae

rice

entry
data

dmn

mha

mhl

entry
data

(See system table type 1

Preface)

MDEDMN

MDEMHA

MDEMHL

IXD_C/

dmn - the data member name

mha - the Data Member Header (DMH) address

mhl - the length of the DMH

Initialization: When irdtially created the DMD is zeroed and its preface is initia-

lized as follows:

id = IDMD from /XDBMC/ common block

nae = NAEMD from /XDBMC/ common block

nce = zero

le = LENMDE from /XDBMC/ common block

The lenEth in words of the DMD is computed as follows:

LEN = NTSTRT * NAEMD _ LENMDE

where NTSTRT is from /XCVT/ common block.

3.4-W

EXECUTIVE DATA BASE STRUCTURES

3.4.2 Data Member

A data member is an ordered set of information which resides, in a logically con-

tiguous fashion, on a data unit. The information can be viewed as two subsets of data,

• (i) user data and (2) non-user or Data Member Manager (DMM) data.

User data are those data which are generated by an Executive or Functional Module and

passed to DMM for storage and subsequent retrieval. The form and content of these data

base structures is discussed elsewhere.

DMM data are structures which provide information about the form, location, and

amount of user data stored as a data member on a data unit. These structures are de-

scribed in the following paragraphs.

3.4.2.1 Data Member Structure

Residence: Data Units

Primary Users: Data Member Manager (DMM)

Description: A data member is composed of a Data Member Header (DMH), Record Sub-

directories (RS), and data records which are addressed using the RS.

Format:

DMH

RS

user

data

records

1 thru n

RS

us er

data

records

n+l thru last

3.4-5

EXECUTIVE MODULES

DMH - the data member header is variable length and contains the Master Record

Directory (RD) which indexes the RS.

RS - the record subdirectories are variable length with their number and

length dependent on the maximum number of records specified by the user

when the member was created.

Life Span: The life span of a data member on an external storage device is dependent

upon the user's retention of the data unit to which it is assigned.

Initialization: Not applicable

3._.2.2 Data Member Header (DMH)

Residence: Data Members

Primary Users: Data Member Manager (DMM)

Description: The DMH is the source of quantitative, historic, and reference informa-

tion for a data member. It consists of a Preface, Format Specification Image, Format

Specification Table, and Record Directory. When a data member is opened for writing, the

DMH is created as part of the Member ConTrol Block (MCB), Section 3.3.6, and space is

reserved for it at the beginning of the data member. As the data member is written,

information on number of records written, maximum record length, and number of Record

Subdirectories written is stored in the DMH. Closing the data member causes the DMH to be

written on the data unit preceeding the other data member data. Subsequent opening of the

data member for reading will cause the DMH to be read into the MCB.

3,4-6

EXECUTIVE DATE BASE STRUCTURES

Format:

DMH

Preface

Body

dmn -

len -

mnr -

cnr -

mrl -

fhl -

vtl -

date -

time -

rdl

nrs

fsil -

fstl -

FSI

FST -

RD -

Data Member Header

dmn

fen

mnr

cnr

mrl

fhl

vtl

date

time

rdl

nrs

fsil

fstl

FSI

FST

RD

Position

Parameter

Common

Block

I

MHDMN

MHLEN

MHMNR

MHCNR

MHMRL

MHFHL

MHVTL

MHDATE

MHTIME

MHRDL

MH_RS

MHFSIL

MHFSTL

MHFSI

/XDBMC/

data member name

member header length

maximum number of data records specified in the open member reguest

current number of user records

maximum record length

fixed header length

length of repeated variable trailer

date member created in form YY/MM/DD

time member created HH.MM.SS

record directory record length

number of record subdirectories

format specification image length

format specification table length

format specification image

format specification table

record directory

Initialization: When the DMH is first created, the following fields are initialized:

dmn = NAMA(2) from /XDBMC/ common block

len = MHSFSI + FSIL + FSTL + RDL, where MHSFSI is from /XDBMC/ common block

and FSIL, FSTL, and RDL are entries in the data member header

mnr = i0000 if mnr specified open member request is zero; otherwise, unchanged

cnr = 0

mrl : 0

fhl = LENFH where LENFH is computed by MMBFST and is summation of data element

lengths of the fixed part of format specification if FSI is non-zero;

otherwise zero

vtl = LENRG where LENRG is the summation of the lengths of the elements

in the variable part of the record if the FST specifies a variable

length fommatted record; otherwise zero

3.4-7

EXECUTIVEMODULES

date = by IDATE
time = by ITIME
rdl = LENRDB= (MNR)TM + 2.99999

nrs = 0

fsil = LENFSI length of format specification image as determined by MMBFSI

fstl = LENFST length of format specification image as determined by MMBFST

The initialization of FSI, FST, and RD are discussed in their subsections.

3.4.2.3 Format Specification Image (FSI)

Residence: Data Member Headers

Primary Users: Data Member Manager (DMM) open write routines, L_AD, UNLOAD, and

UPDATE control statements.

Description: The PSI cannot be described with the tabular presentation used for

other data base structures. It is a Hollerith st-ring of ANOPP data type descriptors which

are separated by commas. The data types may be grouped using parentheses. Single data

types and groups may be prefixed by an integer character string or an asterisk to indicate

repetition. The FSI is always tel_minated with a dollar sign. If the data member which

the FSI describes is unformatted then the FSI will be one word of binary zeroes. The FSI

is initially created by subprogram MMBFSI from the format specification provided on DMM

open write requests (MM@PWD, MM@PWS) and is stored in the Data Member Header. The LOAD,

UNLOAD, and UPDATE control statements retrieve it from there for their own use.

Format: Not applicable

Life S_an: The FSI is core resident in a MCB when a data member is open. The in-

core life span of a particular FSI is, therefore, dependent upon how long the data member

remains open to a module.

The life span of the FSI on secondary storage devices is dependent upon the retention

period of the file on which its data member and unit reside.

Initialization: Not applicable

3. q.-8

EXECUTIVE DATA BASE STRUCTURES

3.4.2.4 Format Specification Table (FST)

Residence: Data Member Headers

Primary Users: Data Menlber Manager (DMM) get and put element routines (MMGETE,

MMPUTE)

Description: The FST is an array of element descriptors which specify the format of

records contained on, or to be written to, a particular data member. The element de-

scriptors have the following formats:

Single Element Descriptor

A single element descriptor is one word in length and its value is less than

seven and not equal to zero. The length of the element is determined as follows:

i. If the element type (value) is greater than zero then the value is

used as an index to the NDTCL table in /XCVT/ common (ELEN = NDTCL(VALUE,3)).

2. If the element descriptor value is negative then the value is the absolute

value of the element descriptor value and the length is based on the
NCPW variable in /XCVT/ (ELEN = (-VALUE+NCPW-1)/NCPW).

Repeated Group Descriptor

A repeated group descriptor is built when the users format requires one or more

elements or element groups to be repeated in the record. Nesting of repeated groups

is permitted. The repeated group descriptor consists of a three word header, a group

of element descriptors of any type, and a two word trailer.

Several subprograms were written to manage the FST for DMM. They are:

i. MMGED - get next element description

2. MMGNEW - determine the number of elements that fit an array of NWDS words

3. MMGNWE - determine the nu_er of words required to write the next NEL elements

4. MMSFEI - reset the FST element index based on the number of words read or

written in the current record

< [

3.4-9

EXECUTIVE MODULES

Format: The following format represents a user format of the type I,

RS, 3(A3,RS),_RD $.

Format Fixed

of lengZh

Length
Header

'Format Ivariable

of /length

Variable_repeat

Length _group

Trailer [

Table

Index

1

2

"3

5

6

7

8

9

.i0

II

12

13

14

IS

Format Specification Position Common
Table Parameter Block

e I 1

e 2 2

rgh I 22

rpt I 3

cnt I 0

re I -3

re 2 2

rgt 1 23

rtn 1 3

rgh 2 22

rpt 2 0

cnt 2 0

re 3 3

rgt 2 23

rtn 2 10

repeat

group IRGRPT

header IRGCNT

I repeat

group
trailer

repeat

group

header

repeat
group
trailer

IRGRTN

/XDBMC/

el,e2,rel,re2, and re 3

rghl and rgh 2

rptland rpt 2

cnt I and cnt 2

rgt I and rgt 2

rtnl and rtn 2

- all Single Element Descriptors having a value greater

than -133, less _han 7, and not zero

- repeat group element types with a value equal to IRGME
in /XDBMC/ common block. They indicate the beginning

of a repeat group header
- contain the integer number of times the elements bracketed

by the repeat group headers and trailer are to be repeated.

rpt., is greater thanzero indicating the repeat group has

a fi_ed number of repetitions, while rpt 2 is zero indicat-
ing an indefinite number

- are zero and are used in element level processing to

control the numbe_ of times a repeat group is repeated

- repeat group trailer element types with a value equal to

IRGTE in /XDBMC/ common block. They indicate the beginning

of repeat group _railer
- indices, relative to the beginning of the FST, to their

related repeat group header

Initialization: Not applicable

3.4-10

EXECUTIVE DATE BASE STRUCTURES

3.4.2.5 Record Directories (RD)

Residence: Data Members

Primary Users: Data Member Manager (DMM) get and put subprograms

Description: The Record Directory is the first level of a two level data record

index which provide DMM with a unified approach to random and sequential accessing of

fixed format, variable format, and unformatted records. The RD is the index to the

second level, the Record Subdirectory (RS), which contains the secondary storage addresses

(relative to beginning of data member) (word addresses on CDC CYBER computer system) of

the actual data records.

The RD record has a fixed format and, within a data member, a fixed length. However,

from data member to data member the length may differ depending on the maximum number of

records (MNR) the user has allocated to a member at open time (MM_PWD, MM_PWS). This

length is calculated using the following algorithm:

LEN = (MNR) ½ + 2.9999

where LEN is integer and the result is truncated.

Format:

Record Directory

id

wa 1

wa.
1

id

wa. -
1

Initialization:

walas_

0

J
RD identifier

the addresses of the secondary storage addresses of RS.

The R record is zeroed prior to use.

3.4-11

EXECUTIVEMODULES

3.4.2.6 RecordSubdirectory(RS)

Residence: Data Member

Primar Z Users: Data Member Manager (DMM) get and put subprograms

Description: The RS is the second level of a two level data record index which

contains the secondary storage addresses relative to the beginning of the data member

(word addresses on CDC CYBER computer system) of the actual data record.

The RS record has a fixed format and, within a data member, a fixed length.

Format:

Record Subdirectory

id

wa I

wa.
1

Walast

nxtwa

id - table identifier

wa i - addresses of the secondary storage addresses of data records

nxtwa - chain word from current to the next RS record

Initialization: The RS record is zeroed prior to use.

id = IDRS from /XDBMC/ common block.

3._-12

EXECUTIVE DATA BASE STRUCTURES

3.4.3 Data Table Types

Residence: DaTa Tables reside on the unit specified by the user when the Table is

builT. While The table is open foe processing, i% resides in Global Dynamic STorage•

Primgry Users: EM modules XTB and DBM module TMBLDI which build Data Tables and DBM

module TMTERP which retrieves an interpolated dependent variable from a currently open

Table.

Description: A data Table is a user created Table of data available to the function-

al modules for processing. It is a one-record member having an internal format corre-

sponding To one of The Data Table Siructumes defined. Cul-rently, only Type 1 data Tables

have been implemented.

The general table structure consists of a fixed length preface of identical format

for all tables and a variable length body of specific format for The individual Table

type. A Data Table is built Through The control statement stream using the TABLE control

statement or in a functional module using the DBM table build routines.

When first opened for processing (TM_PN), a Table is read into core and its name is

entered into the Table directory. When closed (TMCL_S) The Table remains in core and is

logically closed in the directory. Subsequent opens will take place in core via The

directory. If a Table is altered while i% is open in core, it should be closed with a

close alter (TMCLSA) so that a copy will be placed on The original member it came from•

This is necessary %o preserve the integrity of the Table under the following conditions:

(a) while a table is logically closed in The Table directory it can be memoved from The

directory for one Of two reasons: (i) To _ke room for other Tables or (2) because member

manager is processing The member for wmiting; and (b) when The table is removed from The

directory, a subsequent open will read a new copy of the member into core and place its

name into The table direectory.

3._-13

EXECUTIVE MODULES

Format:

Preface

Body

Data Table

idtabl

type

length

rsvd

rsvd

rsvd

rsvd

depends on

type

Position

Parameter

NDTID

NDTTP

NDTLN

NDTST

idtabl - data table identifier (8HDATATABL)

type - table type (integer number)

length - length of this table (includes Preface and Body)

rsvd - reserved four words

Co.on

Block

/XDTMC/

Initialization: There is no initialization.

Life Span: A data table remains in core until: (i) it is closed and its space in the

table directory is needed to open another table, (2) it is being processed by member

manager for writing, or (3) the ter_nination of the current ANOPP run, whichever comes

first.

3.4.3.1 Data Table Type i

DescriptioN: For a full description of Data Tables Residence, Primary Users, Life

Span, Initialization, see Section 3.4.3. A Type 1 table defines a Data Table body format

which specifies interpolation procedures acceptable on this table and the interpolation

procedures to be used when an interpolation request is outside the table range of the

independent variable.

3. _-14

Format :

Preface

Body

EXECUTIVE DATE BASE STRUCTURES

Data Table Type I

nind

idscrp

nint

int

itypdv

a 1

a 2

a 3

adv

(See data table

type preface)

nind

idscrp

nint

int

- number of independent variables in this table .LE.3

array of dimension hind*4

idscrp(_*i-3) - format code of ith independent variable

0 - ordered position from 1 to number of

elements in independent variable array.

In this case a. does not exist.

1 - integer (I) l

2 - real single (RS)

3 - real double (RD)

idscrp(_*i-2) - integer number of ith independent variables

idscrp(_*i-l) - exrapolation procedure to be used if the ith

independent variable value supplied is greater

than largest value of the ith independent

variable in the table

0 - extrapolation not allowed

1 - use closest independent variable value

2 - extrapolate

idserp(_*i) - exrapolation procedures to be used if the value

supplied is less than the smallest value of the

ith independent variable

0 - extrapolation not allowed

1 - use closest independent variable value

2 - extrapolate

- number of elements in array containing interpolation procedures

acceptable on this table

- array containing one or more integer codes of interpolation

procedures acceptable on this table. Acceptable codes are:

0 - no interpolation

1 - linear interpolation

3._-15

itypdv

a I , a 2 , a 3

adv

,EXECUTIVE MODULES

- format code of dependent variable

i - integer (I)

2 - real single (RS)

3 - real double (RD)

- one-dimensional arrays of values for the first, second, and third

independent variables, if they exist. Values must be arranged

in monotonically increasing or decreasing order

- hind-dimensional array of dependent variable values such that

the first independent variable varies first, the second variable

second, and the third, third.

3._-16

Format :

Data

Unit

Sequential
Format

EXECUTIVE DATA BASE STRUCTURES

Se(

Data [

Member

Sequential<

Format [

uential Library File Structure

LDR

EOP

LUH

LDM

Data Record

Data Record

EOS

LDM

EOS

EOP

LUH

EOP

EOF

LDR - see Subsection 3.4.4.2

LUH - see Subsection 3.4.4.3

LDM - see Subsection 3.4.4.4

EOS - CYBER Record Manager End-of-section

EOP - CYBER Record Manager End-of-partition

EOF - CYBER Record Manager End-of-file

Life Span: During an ANOPP run an SLF is available for use following its creation by

UNL@AD or, if it was existent before the run, at any time via L_AD. A SLF may be made

unavailable within ANOPP through use of the DR_P control statement. This, however, will

also remove the file from the ANOPP run's operating environment and it cannot be reestab-

lished within ANOPP.

Initialization: See Subsections 3.4.4.2 through 3.4.4.4.

3.4-17

EXECUTIVEMODULES

3.4.4 Sequential Library

3.4.4.1 Sequential Library File Structure (SLF)

Residence: ANOPP library files reside on secondary storage devices (rotating mass

storage or magnetic tape) and are identified by a file name known to both ANOPP DBM and

the host computer operating system.

Primary Users: L@AD (XLD) and UNLOAD (XUN) control statements.

Description: A Sequential Library File is a set of data units, and a complete or

partial subset of their data members, which has been converted from random to sequential

access file structure. Data units and members within units are unloaded to the SLF, by

name, in ascending binary sequence to permit optimization of data unit and member loading.

Once created, individual data units or members on a SLF cannot be modified in place with-

out destroying the entire set of units.

On CDC CYBER computer systems the SLF will be recorded using Cyber Record Manager

internal blocking (BT=I) and data records will be preceded by a control word (RT=W). This

will provide: (i) efficient data transfer to all types of secondary storage devices, (2)

maximum data recoverability if errors are encountered when loading from the SLF, and (3)

compatibility between CYBER 76 and other CYBER Series computers.

3.4-18

3._.4.2

EXECUTIVE DATE BASE STRUCTURES

Library Directory Record (LDR)

System Table Type: 1

Residence: Sequential Library Files (SLF) and Local Dynamic core storage; the IDX is

IDXLDR in /XSLF/ common block.

Primary Users: UNL@AD (XUN) and L@AD (XLD) control statements

Description: The LDR is a type 1 system table created by XUN which contains a sorted

list of the names of all data members (with their respective data unit names) that were

unloaded to the SLF. The LDR is written as the first record on a SLF by MJN and is sub-

sequently used to control the sequence in which data units and members are unloaded. XLD

uses the LDR to insure the existence of data members named on a L_AD control statement

prior to processing.

Format:

Preface

Body

Entry I

EntrYi I

EntrYnae I

Library Directory Record

id

nae

rice
le

I entrydata

Q

dun

dmn

.- entry
data

Position Common

Parameter Block

(See system table type i
Preface)

LDRDUN /XSLF/

dun - data unit name

dmn - data member name

3. U.-19

EXECUTIVE MODULES

Life Span: Since the LDR is recorded on a sequential library file, its life span

outside ANOPP is dependent upon retention of the SLF by the user. Within ANOPP a par-

ticular LDR is resident during XUN and XLD processing and is available from sequential

libraries.

Initialization: XUNBGN allocates the LDR at the beginning of UNLOAD control state-

ment processing as follows:

i. The number of words initially allocated to the LDR is determined by:

LEN = NTSTRT + NAELDR _ LENDRE, where

NTSTRT is a variable from /XCVT/ common block, and NAELDR and LENDRE are from

/XSLF/ common block.

2. The LDR preface is initialized with the following:

id = IDLDR from /XSLF/ common block

nae = NAELDR from /×SLF/ common block
nee = set to zero

le = LENDRE from /XSLF/ common block

3. The body of the LDR is initially set to zero.

3.4._.3 Library Data Unit Header (LUH)

Residence: Sequential Library Files (SLF)

Primary Users: L_AD (XLD) and UNL#AD (XUN) control statements

Description: The LUH is a subset of information from the Data Unit Header that is

necessary to identify and restore the original data unit when it is loaded. It is gene-

rated by UNLOAD and indicates the start of a new data unit on sequential library files.

The LUH has a fixed record length specified by LENLUH in the /XSLF/ common block.

3. u,-20

EXECUTIVE DATA BASE STRUCTURES

Format:

Library Data Unit Header

id

dun

arflg
ndm

Position

Parameter

LUHID

LUHDUN

LUHAF

LUHNDM

Common

Block

/XSLF/

id -

dun

arflg -
ndm -

LUH Record identifier (Hollerith)

Data Unit Name

Archived Data Unit Flag
Number of data members unloaded from the named data unit

Life Span: The life span of the LUH depends on the retention period for the se-

quential library file on which it resides.

Initialization:

id : IDLUH from the /XSLF/ common block

dun : initialized with the Data Unit Name variable from the related DUD entry

arflg = initialized with the Archive Flag variable from the related DUD entry

ndm = initialized with the number of members to be unloaded from the specified
data unit

3.4.4.4 Library Data Member Structure (LDM)

Residence: ANOPP Library Files

Primary Users: L@AD and UNLcAD control statements

Description: The LDM is a copy of a data member on an ANOPP data unit. It contains

all of the information contained on the data member including the Data Member Header,

Record Directory and Subdirectories.

3.4-21

Format:

EXECUTIVEMODULES

Library Data Member Structure

DMH

RS

User

data

record

1 thru n

RS

User

data

records

n zhru last

DMH

RS

the Data Member Header is variable length and contains the Record
Directory (RD) which indexes the RS.

Record Subdirectories are variable length with their number and

length dependent on the maximum number of records specified by the
user when the member was created.

Life Span: The life span of a particular LDM is dependent upon the retention period

for the file on which it resides.

Initialization: Not applicable

3.4-22

EXECUTIVE DATE BASE STRUCTURES

3.4.5 Executive Management System Reserved Units

The Executive Scratch unit and Data unit are created by XBSDBM which initializes the

Data Base Management System. They exist throughout ANOPP execution.

3.4.5.1 Executive Management System Scratch Unit

Residence: The Executive scratch unit resides on a random access secondary storage

device and is identified by the name NXUNIT from /XCS/ common block.

Primary Users: The Executive Scratch Unit is used by XRT (The Primary Edit Phase),

XCA (The Secondary Edit Phase), XCSP (The Control Statement Processing Phase), and UPDATE.

Description: The Executive Scratch Unit is a set of Mxxx and Uxxx data members

(described in the following sections). It contains a Data Unit,Header (DUH) and a Data

Member Directory (DMD) which contain the information necessary to access and add members.

The format of a data unit in general are described in Section 3.4.1.1.

3.4.5.1.1 Mxxx Member

Residence: The Mxxx Member resides on the Executive Management System (EM) scratch

unit XSUNIT.

Primary Users: EM modules XRT and XCA which construct Mxxx Members and EM modules

XCSP and XMERR which use Mxxx members for processing.

Description: xxx is a display code of integers 001 through 999. M001, the root

member, is built from the control statement images in the Primary Input Stream. M001 is

created during the Primary Edit Phase by XRT and contains the Primary Control Statement

Set in executable form.

Mxxx, xxx.GT.001, is created during the Secondary Edit Phase in XCSP when a CALL CS

is encountered and contains a Secondary Control Statement Set in executable form. The

number xxx is assigned sequentially from 002 as each CALL CS is encountered for the first

time.

3._--23

EXECUTIVE MODULES

An Mxxx Member is made up of N unformatted, variable length records. The first N-I

records are M_xx Control Statement Records (CS Records), one CS Record for each CS image

encountered in the input stream, and the last record is the Mxxx Label Record.

A CS Record is the executable form of one complete CS image supplied by the user in

the Primary or Secondary Input Stream. The CS records are sequenced in the order corre-

sponding to the occurrence of the CS in the Primary Input Stream.

The Label Record contains an entry for each labelled control statement in the CS

stream and specifies all label names and their corresponding CS record location. The

Label Record is variable length depending on the number of label entries. However, the

presence of the Preface always insures a Label Record length of .GE.I.

Format:

Record I

Mxxx Member

first CS Record

RecordN_ 1

Record N Label Record

where N is the number of records on Mxxx

last CS Record

3.4-24

EXECUTIVE DATA BASE STRUCTURES

Format:

Preface

Body

_DB 1

_DB.
l

ODBnodb

Control Statement Record

len

lab

nam

nim_

nodb

stodb

mem

stimg

endim_

I entrydata

typevalue

entry

data

Position

Parameter

KLCS

KCSLAB

KCSN

KNIMG

KN@DB

K_DB

KMEM

KIMG

Common

Block

Ixcs/

8.4-25

EXECUTIVE MODULES

Preface

len

lab

ham

nimg

nodb

stodb

mere

stimg

ending

Body

ODB.
1

Format:

Preface

nent

name

ncs

Body

- includes word zero through the last word of The CS image. The

length of the preface varies with the number of words required

for the CS image. The maximum preface length is 7+ (maximum

cards allowed per CS) _ (number of words per card image) which

is (7 , 5 _ i0) or 57.

- number of words in this record

- name of CS label (AS) if this CS had a label; otherwise blank

- CS name (AS)

- number of words in the CS image

- number of Operand Description Blocks (_DB) in the C5 record

- start of the ODB entries relative to the start of the CS Record.

- Contains one of the following entries depending on the CS name:

I. if this is a CALL CS - name of The Mxxx Member (AS) which

contains the Secondary CS Set ready for the CS Processing

Phase.

2. if this is an UPDATE CS or TABLE CS with a source : * - name

of the Uxxx Member (AS) which contains the card image input

3. if not I or 2, then blanks

- C5 image in A8 format. Length of the CS IMAGE is (number of cards

in this CS) _ (number of words per card image)

- end of CS image

- the body is made up of Operand Description Block (ODB) entries.

Each field or delimiter (other than comma or blank) following the

C$ name on the CS card image(s) has an ODB entry in the order

encountered on the CS card image

- Operand Description Block entry - variable length entry for each

field encountered in the CS. The first word contains the Type

of the field and the following word(s) contain(s) the value of

the field

Type - ANOPP integer Type code of field

Value - field value - length implied by type code

entry I

entrY i

entrYnent

Label Record

nent

entry

data

name

nee

entry

data

Position Common

Parameter Block

KNLAB /XCS/

KLAB

KLNAME

KNCS

- word preface contains the numbem of entries in this record

- label name (AS)

- number record within the Mxxx member of the CS with this label

within the Mxxx member.

3._-26

EXECUTIVE DATE BASE STRUCTURES

Life Span: The Mxxx Members, built during the Primary or Secondary Edit Phase of

ANOPP, exist during ANOPP execution.

Initialization: There is no initialization. Once the Mxxx Member is created, it is

not altered.

3.4.5.1.2 Uxxx Member

Residence: The Uxxx Member resides on the Executive Management Scratch Unit XSUNIT.

Primary Users: EM module XRT which constructs the Uxxx Member and EM module XCSP

which uses the Uxxx member for processing. The TABLE and UPDATE control statwments.

Description: The Uxxx Member is created during the Primary Edit Phase by XRT when-

ever an UPDATE or TABLE control statement with a source = n field is encountered in the

Primary Input Stream and contains the UPDATE or TABLE input which immediately follows the

corresponding control statement in the Primary Input Stream. This input, in card image

format (10A8), is to be used as source input during execution of the corresponding UPDATE

or TABLE control statements.

xxx is a display code of integers OO1 through 999. The number xxx is assigned

sequentially from 001 as each TABLE or UPDATE control statement is encountered during the

Primary Edit Phase.

Format:

Record I

Record N

Uxxx Member

card image

card image

where N is the number of input card images on the Uxxx Member.

Initialization: There is no initialization. Once the Uxxx Member is created, it is

not altered.

3._-27

EXECUTIVE MODULES

3.4.5.2 Data Unit

Residence: The DATA unit resides on a random access secondary storage device and is

identified by the name NDATA from /XCS/ common block.

Primary Users: XRT (the Primary Edit Phase) builds the members on DATA and DBM

modules access members built on DATA.

Description: DATA contains Data Unit Header (DUH) and a Data Member Directory (DMD)

which contain information necessary to access and add data members. The DUH and DMD are

followed by the data members which are built during the Primary Edit Phase (XRT) whenever

a DATA control statement is encountered. The members are built in card image format from

the card images which follow the DATA control statement in the input stream until an END _

control statement is encountered. The format of data unit in general is described in

Section 3.4.1.1.

Format:

DATA Unit

DUH

DMD

members

DUH - data unit header

DMD - data member directory

members - card image format

Life Span: DATA unit exists throughout ANOPP execution.

Initialization: When initially created by XBSDBM, DATA contains only the DLM and

DMD. Their initial settings established by XCTDU are described in Sections 3.4.1.2 and

3.4.1.3, respectively.

3._,-28

3.5 EXECUTIVE MANAGEMENT SYSTEM,

3.5.1 Overview

EXECUTIVE MODULES

The Executive Management System (EM) controls the execution of ANOPP from beginning

to end. The following tasks are required to accomplish this control:

i, Perform initialization requirements for the Executive Management System

(EM), _he Data Base Management System (DBM), the Dynamic Storage Management

System (DSM), and the General Utilities.

2. Validate the required user supplied set of control statements which defines

the execution sequence.

3. Direct the order of execution dynamically via the required set and the optional

set(s) of control statements supplied by the user.

q. Control the execution of Functional Modules (F.M.) by transferring execution

control to the specified F.M. and by insuring the integrity of the ANOPP system

environment upon completion of the F.M,

5. Direct the action to be taken upon encountering a non-fatal error during

execution of ANOPP.

6. Validate the optional set(s) of controlstatements which define secondary

execution sequence(s) to be performed.

7. Terminate ANOPP when all required tasks have been accomplished.

8. Abort ANOPP if a fatal error occurs during the performance of the above tasks.

ANOPP is controlled by a set of control statements called the Primary Input Stream.

The Primary Input Stream consists of an optional initialization control statement and a

required execution section which defines the execution sequence. The ANOPP control

statement allows the user to deTine selected ANOPP initialization parameters. The exe-

cution section begins with a STARTCS control statement followed by the control statements

defining the execution sequence and ends with an ENDCS control statement.

Additional control statement sets may define secondary execution sequences to be

dynamically executed via a CALL control statement. The additional control statement

3.5-1

EXECUTIVE MODULES

set is called a Secondary Input Stream and resides as a data member in card image format.

The Secondary Input Stream may be prepared prior to the current ANOPP execution or it may

be created within the execution sequence prior to the corresponding CALL control state-

ment.

Executive Monitor (XM) is the driver module for the Executive Management System. XM

is also the main FORTRAN program for ANOPP and remains in core at all times.

The Executive Management System is composed of eight execution phases which are

controlled directly or indirectly by the XM driver module. The following execution phases

correspond to the eight Executive Management System tasks previously stated:

i. Initialization Phase

2. Primary Edit Phase

3. Control Statement Processing Phase

_. Functional Module Processing Phase

5. Error Processing Phase

6. Secondary Edit Phase

7. Normal Termination Phase

B. Error Termination Phase

3.5.2 Control Statements

A control statement is one or more cards or card images which defines a particular

action to be performed by the ANOPP Executive Management System. A set of control state-

ments is one or more statements which are ordered sequentially to define an execution

sequence, et is executed sequentially from the first control statement through the

last control statement in the set. The sequential flow may be altered, however, by

special control statements which transfer execution control to a specified control state-

ment in the same set or the beginning of another set. There are two types of control

statement sets, the Primamy Input Stream and the Secondary Input Stream.

3.5-2

EXECUTIVE MANAGEMENT SYSTEM

3.5.2.1 Primary Input Stream

The Primary Input Stream is a required set of input cards. It consists of an op-

tional initialization control statement (CS), the AN_PP CS, and a required execution

section. The ANCPP CS allows the user to define initialization values for selected

executive module parameters. If present, it must be the first CS in the Primary Input

Stream. If omitted, all parameters are initialized according to predefined installation

values. The execution section begins with a STARTCS control statement followed by control

statements defining the execution sequence and ends with an ENDCS control statement. If

the ANOPP CS is not present, STARTCS is the first card in the Primary Input Stream.

3.5.2.2 Secondary Input Stream

A Secondary Input Stream is an optional set of card images which resides as a data

member in card image (CI) format. A CALL in the Primary Input Stream brings into exe-

cution a Secondary Input Stream which may also contain a CALL. There is no limit to the

number of nested CALL control statements. There is no required first or last control

statement (CS) in a Secondary Input Stream. The execution sequence begins with the first

CS and ends with the last CS. However all control statements or control statement forms

defined for ANOPP are not available for usage in a Secondary Input Stream. The invalid

control statements are generally those which require card input to immediately follow the

CS. An example is the DATA control statement (see Section 3.5.2.4.7). All control state-

ments of this type require the END* card (see Section 3.5.2.4.11) to terminate the input

and are valid in the Primary Input Stream only. The ANOPP, STARTCS and ENDCS control

statements are also invalid in the Secondary Input Stream. The validity of each CS with

respect to usage is given in the specific CS description section (see Section 3.5.2.4).

3.5-3

3.5.2.3 General Description

3.5.2.3.1 Format

EXECUTIVE MODULES

The general format of a control statement (CS) is shown below:

label_csname_op $ comments

where:

label

cs_%ame

op

$

an optional 1-8 character alphanumberic name tag which will be

associated with this directive. A label is allowed on any control

statement except AN@PP, STARTCS, END _, and RETURN.

a comma or a blank

a valid 1-8 character alphanumeric control statement name

operand field(s) as appropriate to particular control statement

the end-of-data character which indicates completion of a CS.

The remainder of the card may be comment.

3.5.2.3.2 Valid Control Statement Names

Valid control statement names recognized by the ANOPP system are shown below:

AN_PP DATA G@T_ RETURN

ARCHIVE DETACH IF SETSYS

ATTACH DR_P L_AD STARTCS

CALL ENDCS PARAM TABLE

C@NTINUE END h PR@CEED UNL@AD

CREATE EXECUTE PURGE UPDATE

3.5.2.3.3 Free-Field Form

A CS directive is free-field form on a card image in columns 1-80. The fields

(including label and CS name) may begin in any column. Blanks or commas may be used

freely between fields for spacing and are ignored.

3.5.2.3._ Comments

A comment may follow the end-of-data character ($) on a card image and extend through

column 80. A comment card is a card image (other than a CS continuation card) with the

first non-blank character, other than a comma, being a $. The remainder of the card is

processed as a comment,

3.5-4

EXECUTIVE MANAGEMENT SYSTEM

3.5.2.3.5 Continuation

A CS may require more than one card image for completion. A maximum of 5 continua-

tion cards are allowed with the end-of-data ($) character appearing on the last card image

required. A Hollerith field type may be continued to column 1 of the continuation card

image; however, the nH portion which identifies it as Hollerith must not be split between

two card images. No other field types may be split between two card images. Comments may

not be continued (except as multiple comment cards).

3.5.2.4 Specific Descriptions

On the following control statements (CS) an optional field is enclosed in [] . The

symbol _ represents a blank. The alphabetic letter is slashed when appearing on a card

image (e.g., alpha _, numeric 0, alpha Z, numeric 2).

3.5.2.4.1 AN_PP

Purpose: The AN_PP control statement is optional and provides for user-specified

values to be used for executive system parameters during the ANOPP run instead of system

defined default values. If used, it must be the first control statement in the Primary

Input Stream immediately preceding the STARTCS control statement.

Format:

keyword

value

AN_PP_keywordl=Valuel[_..._keywordn=valuen] $

- the name of the parameter whose default value the user wishes to override

or replace. A list of valid keywords with their corresponding acceptable

replacement values and system default values is given in the ANOPP Keyword

Table (see Table i).

- the value which is to replace the system default value for the corre-

sponding keyword. A label field is not allowed on the AN@PP statement.

Examples:

AN_PP JECH@:.TRUE. $

AN_PP,JL_G=.TRUE. JECH_ =.TRUE. $

AN_PP NLPPM = 40,LENGL=30000,JL_G = .FALSE.$

Restriction: ANOPP is valid only as the first CS in the Primary Input Stream.

k ,
3.5-5

EXECUTIVE MODULES

KEYWORD DESCRIPTION

RANGE OF

ACCEPTABLE VALUES DEFAULT PARAMETERS

Residence Name Value

JECH0

JL_G

LENGL

NAETD

NAEUD

NLPPM

N_G@

Print card images from

the primary input stream
or from a member (via a

CAll CS) as they are

validated in Primary Edit

Phase and Secondardy
Edit Phase

JEC_ = .TRUE. then print

card images
JECH_ = .FALSE. then do

not print card

images

Print card images of
control statements as

executed in the Control

Statement Processing

Phase

JL@G = .TRUE. then print

card images
JL_G = .FALSE. then do

not print card

images

Length of global dynamic

storage initialized for

this ANOPP run

Number of initially
allocated entries in the

Table Directory

Number of initially
allocated entries in the

United Directory

Number of lines per

printed pages to be
used for all ANOPP

printed output

PRIMARY EDIT ONLY

N_G_ = .TRUE. then

terminate ANOPP after

Primary Edit Phase

N_G_= .FALSE• then do
not Terminate ANOPP after

Primary Edit Phase

.TRUE. IXSPTI JECB_ .FALSE.

.FALSE•

'XSPT/ JL@G .TRUE.

Integer I0 _ 300010 /XCVT/ LENGL

Integer >_ I /XDTMC/ NAETD

20,0008

1010

Integer > 4 /XDBMC/ NAEUD 2510

Integer I510<NLPPM /XCSFM/ NLPPM 4810

/XCS/ N_G_ ,FALSE..TRUE.

•FALSE•

Table 1. ANOPP Contneol Statement Keywomd Table.

3.5-6

EXECUTIVE MANAGEMENT SYSTEM

3.5.2.4.2 ARCHIVE

Purpose: The ARCHIVE control statement permanently prohibits any request to write on

the named unit or units.

Format:

[label_]ARCHIVEgdUl[...gdu n]$

label label name

du name of the data unit to be archlved

The specified unit(s) are permanently archived and no future writes to the unit(s)

are permitted. The archive indicator is written to the unit thus prohibiting output to

the unit(s) even in subsequent ANOPP runs.

Examples:

LAB,ARCHIVE UI, U2 UI0, U50 $

ARCHIVE,US0 $

3.5.2.4.3 ATTACH

Purpose: The ATTACH control statement attaches data units to the internal system

which were previously created on direct access files and are presently assigned in the

external system.

Format:

[labels] ATTACH_duI[/efnl/] [• • ,dUn[/efnn_] $

label - label name

du name of data unit to be attached

efn name of the external file associated with du

An entry is made in the Unit Directory for each data unit named (du) and the external

file name specified (efn) is associated with the unit.

3.5-7

EXECUTIVEMODULES

Examples:

ATTACH UNITI/M0150/, UNIT2/UO01/ $

ATTACH UNIT2/EFN/ $

Restriction: Data units appearing on the ATTACH CS must have appeared on a DETACH CS

in this or a previous ANOPP execution.

3.5.2._.a CALL

Purpose: The CALL control statement executes a set of control statements which have

been previously created in card image format (CI) on a data member of a data unit. Prior

to execution the CS images will be altered according to specified value replacements.

Format:

label

du

dm

oldvalue -

newvalue -

[label_] CALL_du(din) _oldvaluel:newvaluel, oldvaluen:newvaluen] $

label name

the name of the data unit containing dm

the name of the data member which is composed of the set of control

statements to be executed

the field value which when encountered on a CS card image is to be

replaced with the corresponding "new value". The old value may be

any valid field type (I, RS, RD, L, A0, L0, N, A) recognized by the

XCR module when cracking a card image.

the field value which will replace the "old value". The new value

may be any valid field type (I, RS, RD, L, A0, L0, N, A) described

in Section 3.9, Table 1. The type of this old value does not have

to be the same as the type of the new value; any field value may be

replaced by any other field value.

Each control statement (one or more card image records) on the member dm will be

searched for fields which match the "old value" parameters specified on the CALL CS. If

a field is found to match an "old value" then it is repced with the corresponding "new

value". The types of "old value" and "new value" may ol may not agree.

After all replacements have been successfully accomplished, the set of control

statements are executed sequentially beginning with the first CS in the dm member. Of

course, execution flow sequence within the secondary control stream may be altered by a CS

such as G_T_, IF, or another CALL.

3.5-8

EXECUTIVE MANAGEMENT SYSTEM

Upon completion of the set of CALLed control statements, execution will continue with

the CS immediately following the CALL CS.

LABEL CALL UNI(DM2),ANAME=BNAME,IO:I5 $

CALL,UN2(DM2),3HABC=6HABCDEF,10=I5.5 $

CALL UN3(DM3),.TRUE.:.FALSE.,+=*,*=NAME $

Restrictions: du (d m) was previously created during this ANOPP run or on a previous

ANOPP run with a fixed format of CI (the normal procedure for creating du (dm) is via the

DATA or UPDATE CS).

3.5.2.4.5 C@NTINUE

P_pose: The C@NTINUE control statement allows for a no action step in execution.

It is used mainly with a G_T_ to allow processing flow alteration.

Format:

[IabeI_C_NTINUE $

label - label name

Examples:

LABELI C_NTINUE $

3.5.2.4.6 CREATE

purpose: The CREATE control statement defines an empty data unit on a direct access

storage device for subsequent output of members.

Format:

label

du

efn -

C A E dUl[le% [... ,dun e%I]]$
label name

the name of the data unit to be associated with the data to be output

on efn for this ANOPP run

the name of a file, known to the user, which is defined in the external

system. If omitted, a scratch file name is assigned.

3.5-9

EXECUTIVE MODULES

Examples:

[LABELICREATE UNITI,UNIT2/EFN2/,UN3/E3/ $
CREATE UNIT2 $

Restrictions: The du and efn cannot respectively be the same as another data unit

name or external file name currently entered in the data unit directory.

3.5.2.4.7 DATA

Purpose :

Format :

label

dmname

The DATA control statement creates a data member on data unit DATA.

label_ DATA_DM:dmname $

label name

the name of the data member to be created on data unit DATA.

Data which is To form the data member, dmname, must immediately follow the DATA CS

directive in the Primary Input Stream. The data card images must be terminated by an END _

CS following the last card image to be used as data.

Dmname will be written on data unit DATA. Dmname will have a fixed format of IOA8

which corresponds to a card image. Each record on dmname will correspond to a single card

image read from the Primary Input Stream. Any valid FORTRAN character is acceptable on

the card image in any sequence except as follows: beginning with the first non-blank

character, the first four (4) characters on a card image must not be END* as this is

recognized as the DATA CS input terminator (i.e., a card image beginning with END_AB is

not an acceptable data card image).

Examples:

LABEL DATA DM = DMEM $

1 2 3 4 ... 50

1.5 2.1 6.0 .TRUE _0

END _ $

The data member DMEM will consist of two records of fixed format IOA8. Record 1 will

contain the card image:

1 2 3 4 ... 50

3.5-10

EXECUTIVE MANAGEMENT SYSTEM

Record 2 will contain the card image:

1.5 2.1 6.0 .TRUE 40

Restrictions: The same name must not appear on another DATA CS within the same ANOPP

run.

3.5.2.4.8 DETACH

known to the ANOPP run.

left unchanged.

Format:

label

du

The DETACH control statement removes a data unit from the set of data units

The status of the external file associated with this data unit is

_abel_DETACH_dUl_..,du n]$

label name

name of the data unit kno_rn to the ANOPP run

NOTE: Unless the data unit resides on a scratch file the external file is available for

s_bsequent ATTACH CS statements.

Examples:

L1 DETACH AIRCR,AIRPRTS,WC@N $

DETACH MSC $

3.5.2.4.9 DR_P

Purpose: The DR@P control statement drops a sequential library file assigned to this

job from the external system. The sequential library file is disassociated with the

current execution.

Format:

label -

sefn -

Examples:

END DR@P

DR@P

6abel_]DR@P_/sefnl/[..-,/sefnn_ $

label name

name of the sequential library files to be dropped.

/TAPEI/,/TAPE2/,/FILEI/ $

/FLE/ $

3.5-11

EXECUTIVEMODULES

Restrictions: Sequential library file names (sefn) must be unique.

3.5.2.4.10 ENDCS

Purpose: The ENDCS control statement when processed terminates the ANOPP run. There

must be only one ENDCS per run, and it must be the last control statement in the Primary

Input Stream. It is the only control statement which will terminate an ANOPP run.

Format:

label

[label_]ENDCS $

- label name

Examples:

ENDCS $

ST_P ENDCS $

Restriction: ENDCS is valid in the Primary Input SVeeam only.

3.5.2._.ii END*

Purpose: The END* control statement indicates the end of the card image input stream

required by the previous control statement, DATA, UPDATE or TABLE.

Format:

END* $

Examples: See DATA CS, UPDATE CS, and TABLE CS for specific examples.

Restriction: END* is valid in the Primary Input Stream only. A label field is

unacceptable on an END* CS.

3.5.2.4.12 EXECUTE

Purpose: The EXECUTE con%Tol statement defines a set of alternate names and executes

a specified functional module.

Format :

[IabeI_]EXECUTE fmname_[refnamel:altname I _efname:altname n] $

3.5-12

EXECUTIVE MANAGEMENT SYSTEM

label

fmname

refname

altname

- label name

- the name of the functional module which is to be executed.

- The reference name which has a corresponding name

- the alternate name corresponding to the reference name

A set of reference names (refname) and corresponding alternate names (altname) is

established (both refname and altname are valid name fields). The functional module is

placed in execution immediately. During the execution, the set of alternate names is

available for retrieval by the functional module or by an executive system module (for

full explanation, see ANOPP Parameter Maintenance Functions (PMF) utilities, Member Manager

Subprogram input arguments, and Table Manager subprogram input arguments).

Examples:

L1 EXECUTE JET AI=UAB,B=D $

EXECUTE JET $

Restriction: EXECUTE is valid in the Primary or Secondary Input Stream. fmname must

refer to a functional module installed and recognized by The ANOPP executive system.

3.5.2.4.13 G_T_

Purpose: The G_T_ control statement allows an alteration in the flow of control

statement processing. Processing will continue at the control statement containing the

label specified.

Format:

[label_]G_T_labnam $

labnam the label name of the control statement at which processing should

continue

Examples:

NAME G_T_ NAME2 $

G@T_ NAME $

Restriction: Labname must be in the label field of a control statement which is

within the same set of control statements as this G_T_.

"3.5-13

3.5.2.4.14 IF

EXECUTIVE MODULES

P_pose: The IF control statement permits an alteration in the flow of processing if

a specified condition exists. The value of a user parameter is compared with the value of

either another user parameter or a constant. If the comparison results in a true condition

then processing continues with the control statement having the specified label; otherwise,

processing continues with the next control statement.

Format:

[label_]IF _ logicalparamname_operato r

paramname^
• 2

numerlcal constant

logical constant

string constant

G#T_labnam $

label

paramname 1

logical operator

paramname^
• 2

numerlcal constant

logical constant

string constant

labnam

- label name

- name of a user parameter whose value is to be compared with

the value following the logical operator

a logical operator used in comparison of the two values.

Any logical operator is valid for comparing values which are

type integer, real single precision, or real double precision.

The operators .EQ. and .NE. are valid for values of types

logical and character string

the second value for comparison

the label of the control statement at which processing

should continue if the comparison of the two values results

in a true condition.

Examplgs:

LABEL IF (A .GE. B) G@T@ LABEL1 $

IF (D .EQ..TRUE.) G_T_ LABEL1 $

IF (F .EQ. 6HFVALUE) G_T_ LABEL $

Restriction: Labnam must be in the label field of a control statement which is

within the same set of control statements as this IF. The type of the second value must

agree with the value type of paramname I. If the Type is character string then the number

of characters in the Two strings must be equal.

3.5-1_

EXECUTIVE MANAGEMENT SYSTEM

3.5.2.4.15 LeAD

Purpose: The L_AD control statement loads data units from a sequential library file

which has been assigned to the run through the external operating system's control langu-

age. This sequential library file must have been created by an UNL@AD CS by the current

or a previous ANOPP run. This CS provides selective loading and/or renaming of data units

stored in a sequential library file.

Format:

[label_] L_AD/sefn/ $
or

abel]L_AD/sefn/[dus I ,dus n

dus has the form:

du[[/efn/] : odu _dl,...,dn)]]

d. may have either of the forths:
1

dm 1

dmne w = dmol d .

] $ where

label

sefn

du

efn

odu

dm

dm
new

dmol d

- label name

- the sequential external file name of the library file from which data

units are to be read

- the name of the data unit which is to be loaded

- the external file name

- the name under which the data unit was unloaded. If not specified, it

is assumed to equal du

- the name of a data member on the odu which is to be loaded from the

library. If a member list is not specified, all data members on odu du

are loaded from the libgary

- new name of data member

- name data member was known by

Examples:

L_AD/TAPEI/ $

L@AD/TAPEI/UNIT1/EFNI/ (MEMI,MEM2) $

L@AD/TAPEI/UNIT2,UNIT3/EFN3/=OUNIT3 $

Restriction: du and efn must not be in the current data ,,nit directory. The name of

the data unit to be loaded may no_ be XSUNIT or DATA. If duplicate data unit names

appear on the left of the = , only one occurscence may specify the optional external file

name (/efn/).

3.5-15

EXECUTIVE MODULES

If data unit name stands alone, as in the form

L@AD/LFNI/DUNI $ or

L@AD/LFNI/DUNI/EFNI/ $

then the data unit name (DUN1) may not appear on the right of the = again.

There may be no duplicate data unit and data member name combinations on the right of

the =

3.5.2.4.16 PARAM

Purpose :

value of an already existing user parameter.

Format : numerical constant

string constant

[labe ld]PARAM_paramnamel = logical constant

paramname 2

or

[lab el_] PARAM_p ar amname i = paramname onstantumerxcal

label

paramname I

paramname 2 -

The PARAM control statement establishes a user parameter or changes the

... S

label name

a valid ANOPP name of the user parameter for which a value is to

be established or changed

a valid ANOPP name of a user parameter for which a value has already

been set

In the first form, paramname I, will be given the value following the equals sign. If

paramname 2 is specified, the current value of the user parameter paramname 2 will be used.

In the second form an algebraic operation will be performed on _o values which must

be of the same type and the result will become the value of paramname I. The current value

of paramname 2 must be of the same type as the numeric constant. If paramname I is the name

of a previously established user parameter (via a PARAM CS or an XPUTP call), its value

will be changed. The types of the old and new values may or may not agree.

If paramname I is not the name of a previously established user parameter, then a new

user parameter is established and will remain available throughout the ANOPP run. A user

parameter once established is never deleted from the set of known user parameters.

3.5-i6

Examples:

PARAM A=.5,B=A+I0,C=D*2 $

PARAM F=C $

EXECUTIVE MANAGEMENT SYSTEM

3.5.2.4.17 PROCEED

_: The PR@CEED control statement allows for processing to continue at a

specified point after an ANOPP error has occurred. It is used mainly in conjunction with

the system parameter JC_N which may be set via the SETSYS control statement. When a

control statement cannot process to its normal completion due to a non-fatal error condi-

tion, processing will conzlnue with the first encountered PR@CEED control statement if

system parameter JCCN is set to .FALSE. The PR@CEED, when encountered for execution by

normal processing, is a no action step.

Format:

abel] PR@CEED $

label - label field

E_amples:

ERR1 PR@CEED $

PR@CEED $

Restriction: Upon encountering a non-fatal error, the control stream is searched for

a PR@CEED statement. CALL statements encountered in this search are not expanded.

3.5.2.4.18 PURGE

Purpose: The PURGE control statement removes a data unit (or units) from the set of

data units known to the ANOPP Data Base Manager and also from the external operating

system.

Format:

[label_]PURGE_dul[...,dUn] $

label - label name

du - name of the data uni£ to be purged

3.5-17

Examples:

APP PURGE UNI,UN2,UN4,UNS $

PURGE UN6 $

EXECUTIVE MODULES

3.5.2.4.1g RETURN

Purpose: The RETURN control statement indicates processing of a Secondary Input

Stream is complete and allows return to the calling Primary or Secondary Input Stream.

Format:

RETURN $

RETURN is created internally during the Secondary Edit Phase (see Section 3.5.4.6) to

indicate completion of The Secondary Input Stream'. Upon processing a RETURN, execution

will continue with the control statement following the CALL which initiated the execution

of the Secondary Input Stream.

Examples: Not applicable

Restriction: RETURN is not allowed in the primary or secondary input stream provided

by the user. It is simulated during the secondamy edit phase for internal control only.

3.5.2.4.20 SETSYS

Purpose: The SETSYS control statement sets the value of a user system parameter.

Format:

[label_SETSYS_sysparaml:value I [,... ,sysparamn=value n]

label

sysparam

value

- label name

- the name of a user system pamameter for which a value is to be set.

A list is found in Table 2. SETSYS System Parameters Table.

- the value to which the corresponding user system parameter is to be

set. The type of value must be valid and within range for the

corresponding user system parameter

A user system parameter may be set several times duxing the ANOPP run via a SETSYS

CS. All user system pamameters have initial value settings determined during the ANOPP

Initialization Phase. The initial value is the default value defined by the ANOPP system

3.5-18

SYSTEM

PARAMETER

NAME

EXECUTIVE MANAGEMENT SYSTEM

DESCRIPTION TYPE/RANGE

DEFAULT

VALUE

Jcf_

JECH_

JL@G

Controls Executive Managers action when

an error has been detected in processing
an ANOPP control statement. JC@N = .TRUE.

indicates execution will continue with the

next CS.

JC_N = .FALSE. indicates execution will

continue with the next PR@CEED CS. If a

FR¢CEED is not encountered then the ENDCS

CS will be executed for a normal termination.

Controls printing of the CS card images

upon validation in the Primary and Secondary
Edit Phases• All of the Control Statements

in the Primary input stream are edited for
errors before execution of the first CS

(Primary Edit Phase). All of the control
statements in a data member which is called

into execution via the CALL CS are edited

for errors before execution of the first CS

(Secondary Edit Phase).

JECH_ = .TRUE. indicates the CS images

are to be printed
JECH@ = .FALSE. indicates the CS images

are not to be printed

Controls printing of the CS card images

upon execution in the AN@PP Control
Statement Processing Phase.

JL_G = .TRUE. indicates the es images

are to be printed

JECH_ = .FALSE. indicates the CS images

are not to be printed

Logical
.TRUE•

.FALSE.

Logical

.TRUE.

.FALSE.

Logical
•TRUE.

.FALSE.

.FALSE.

.FALSE.

.TRUE.

Table 2. SETSYS System Parameters

3.5-19

EXECUTIVE MODULES

independent of user control. However, the default value of several system parameters may

be set by the user during the Initialization Phase by the ANOPP CS.

Examples:

SETSYS JECH_=.TRUE. $

ABC SETSYS JC@N=.TRUE.,JL_G=.TRUE. $

3.5.2.4.21 STARTCS

Pur_gse: The STARTCS control statement indicates the beginning of control statements

in the Primary Input Stream. It is required for each ANOPP run. It immediately follows

the ANOPP control statement, if present; otherwise, it must be the first card in the ANOPP

Primary Iuput Stream.

Format:

STARTCS $

Examples:

STARTCS $

Restrictions: STARTCS is valid in the Primary Input Stream only. A label field is

not allowed on the STARTCS.

3.5.2.4.22 TABLE

P_pose: The TABLE control statement builds a data table on a specified member, or

subsequent use by Table Manager, from table description input cards.

Format:

[label_]TABgE_du(dm)_type_SOURCE:srce $

label

du(dm)

type

srce

- label name

- specifies the name of the unit and member on which the table is to be

built

- specifies the type of table to be built. A pPesent type must be 1

(see Section 3._.3.1 fop descPiption of Table Type I)

- specifies the location of the table descPiption card images

may assume one of two fomms:

* card images follow in input stream;

du(dm) card images reside on the specified unit member in card image

(CI) format

3.5-20

EXECUTIVEMANAGEMENTSYSTEM

Thetable type 1 table description cardsare of the following format:

INT = CI,...
IND = FC,NV,EXU,EXL,VALI,VAL2,...
DEPn = FC,VALI,VAL2,...

where:

INTcard

IND cardn

DEPcard

- containsthe integer codesfor the interpolation procedurespermitted
on this table.
C1 - Integer code

0 - no interpolation permitted
1 - linear interpolation

- containsthe description of the nth independentvariable whereISn53.
FC - (formatcode)the alphadata type codeof the nth independent

variable.
0 - orderedposition from1 ToNV;independentvariable values

not entered
I - integer

RS- real single precision
RD- real doubleprecision

NV - numberof valuesfor the nth independentvariable
EXU- integer codefor the extrapolation procedureto beused(by

interpolation routines) if the independentvariable is greater
than the largest independent variable

0 - no extrapolation allowed

1 - use the independent value closest To the specified value

2 - extrapolation is linear using the last two independent

values

EXL integer code for the extrapolation procedures to be used if

the independent variable is less Than the smallest independent

variable. See EXU for code value

VALI - NV values for The nth independent variable in ascending or

descending order. Values are separated by blank or comma and

may extend over several card images. If FC=O, values are no_

included.

- contains The description and values of the dependent variable and must

follow the INDN cards.

FC - (format code) alpha data type of dependent variable

I - integer

RS - real single precision

RD - real double precision

VALI - values for the dependent variable separated by commas or blanks.

May extend over several card images. The order of dependent

variables is such that _he first independent variable varies

first, the second variable varies second, and the Third variable

varies third.

END* card - required if soumce = *.

3.5-21

with

EXECUTIVE MODULES

Examples:

LAB TABLE UNI(DMS),I,S@URCE:* $

INT = 0,i

IND2 = 1,2,0,i,5,10

INDI = RS,3,0,I,I.5,2.0,4.5

DEP = 1,3,5,7,8,9

END* $

TABLE UN2(DMI),I,S@URCE=UN5 (DM2) $

Restriction: TABLE with S@URCE =_ is valid in the Primary Iuput Stream only. TABLE

S@URCE=DU(DM) is valid in the Primary or Secondary Iuput Stream.

3.5.2.4.23 UNLOAD

Purpose: The UNLOAD control statement unloads data units, known to the present ANOPP

run, to a sequential library file which has been defined and assigned to the run through

the operating system control language.

Format:

babel_]UNL_AD/sefn/_usl,...dUSn] $

where dus is of the following form:

du[(dml,..,dm n)]

label label name

sefn the sequential file name of the library file to which data units are to

be unloaded

du the name of the data unit to be unloaded

dm - the name of the data member to be unloaded. If a data member is not

specified, all of the data members on the data unit are unloaded

If a data unit llst is not specified, all data units presently defined in the Unit

Directory except XSUNIT and DATA will be unloaded to sefn. The Unit Directory consists of

all units which have been L_ADed, ATTACHed, or CREATed, and have not been DETACHed or

PURGed since the beginning of the ANOPP run.

Examples:

UNLOAD/TAPE1/ $

UNL_AD/TAPEI/UNIT1,UNIT2(MEMI) $

Restrictions: There may be no duplicate data unit and data member name combinations.

3.5-22

EXECUTIVE MANAGEMENT SYSTEM

3.5.2.4.24 UPDATE

Purpose: The UPDATE control statement provides a means of building a data unit by

using an existing data unit as a basis for modifications or by adding members from various

sources with no one data unit as a basis or a combination of both. There are two UPDATE

modes, revise and create, depending on the presence of a data unit as a basis for revi-

sion. For more detailed information concerning UPDATE, see Section 3.8.

Format :

[IabeI_UPDATE_[_LDU=du I 4] NEWU=du2 _ [ALL_]S_URCE={_u3(dm3)}ILIST=x[x...]] $

label

du I

du 2

ALL

SOURCE clause

LIST clause -

label name

the name of the data unit to be used as the basis for UPDATE pro-

cessing. The presence of the OLDU clause indicates a revise mode
UPDATE. Member level and record level directives which allow a

default of OLDU data unit or imply the OLDU data unit, will use dUl,
as the required unit. The omission of the OLDU clause indicates a
create mode UPDATE.

the name of the new data unit to be built during UPDATE processing.

this keyword indicates a full update of the basis data unit (OLDU) is

to be performed. All data members on the OLDU data unit which are not

processed by a member level directive will be copied to the NEWU data
unit.

- the SOURCE clause specifies where the set of UPDATE input directives

will be found.

* indicates the directives follow immediately in the Primary Input

Stream with the set of UPDATE directives terminated by an END* CS.

du^(dm^) indicates the directives are found on the data unit and data
_ . •

member speclfzed

specifies the type of printed output required from the UPDATE process-

ing. The list following the = is a sequence of letters specifying

the sections of output desired. The list may be any combination of

the following:
E - Directive Echo Section

S - Summary Section
C - CHANGE Members Section

A - ADDR Members Section

3.5-23

EXECUTIVE MODULES

Examples:

LAB1 UPDATE NEWU=UI,S_URCE=*,LIST=S $

END* $

UPDATE

UPDATE

END _ $

UPDATE

(directive set)

_LDU=UO01,NEWU=U002,ALL,S@URCE=DUS(MI),LIST=SEA $

@LDU U002,NEWU ABC,S_URCE=* $

(directive set)

ALL,_LD=UNI,NEW:UN2,S#URCE:_,LIST=A $

(update directives)

END*

UPDATE NEW=UN3,S@URCE=UN_(MEMI) $

Restrictions: See UPDATE Description (Section 3.8).

3.5-2q.

EXECUTIVE MANAGEMENT SYSTEM

3.5.3 Executive Monitor (XM)

Purpose: The Executive Monitor (XH) module is the single driver for the Executive

Management System. XM is also the main FORTRAN program for ANOPP and remains in core at

all times. It is in ultimate control of ANOPP from beginning to end and thus directs the

execution of other Executive Management System modules To accomplish the tasks required.

XM calls into execution five of the Executive Management System execution phases. These

phases are the Initialization Phase, the Prima_y Edit Phase, the Control Statement Pro-

cessing Phase, the Functional Module Processing Phase, and the Error Processing Phase.

The remaining execution phases are called into execution as required during these phases

by lower level modules.

Input: Since XH is a driver module to direct execution of various execution phases,

there is no direct input.

Output: Since XM is a driver module there is no output. All output from ANOPP is

accomplished within the various execution phases.

Functional Description: The functions of XM are as follows:

i. To perform initialization requirements for the Executive Management System, the

Data Base Management System, The Dynamic Storage Management System, and The

General Utilities (Initialization Phase).

2. To validate The ANOPP execution sequence defined by the Primary Input Stream

(Primary Edit Phase).

3. To execute or process the execution sequence to completion (Control Statement

Processing Phase).

4. To execute or process Functional Modules (Functional Module Processing Phase).

5. To direct the action to be taken upon encountering a non-fatal error during

execution of The Control Statement or Functional Module Processing Phase (Error

Processing Phase).

Logical DescFiption: XM calls into execution the Initialization Phase, and the

Primary Edit Phase and then iterates between the Control Statement Processing Phase and

either the Functional Module Processing Phase or the Emmor Pro.esslng Phase.

AT the beginning of ANOPP the driver XM is brought into execution and XM immediately

calls XLINK requesting that the module XBS be executed. XBS controls the Initialization

;j,] _','!(:.:_:! ' , 3.5-25

EXECUTIVE MODULES

Phase. Initialization requirements for all executive modules are performed according to

parameter values specified on the optional ANOPP CS in the Primary Input Stream or default

values provided by the ANOPP installation settings.

Upon completion of XBS, XM calls XLINK requesting that XRT be executed. The module

XRT controls the Primary Edit Phase. The control statements in the Primary Input Stream

following the STARTCS are read, validated, reformatted into an executable form, and

written as data member M001. This member resides on the data unit XSUNIT which is re-

served for Executive Management System usage. The reformatted control statements residing

on M001 are called the Primary CS Set. XRT does not return to XM if during the Initializa-

tion Phase or the Primary Edit Phase an error has occurred; XRT will call the Error

Termination Phase to abort ANOPP.

Upon completion of the Primary Edit Phase, XM calls XCSP via XLINK. The XCSP module

controls the Control Statement (CS) Processing Phase. The Primary CS Set is executed or

processed sequentially allowing for flow alteration by certain control statements. A

Secondary Input Stream may be called into execution via a CALL CS. Upon the first execu-

tion of a particular CALL, the Secondary Input Stream is read, validated, reformatted, and

written in executable form as an Mxxx type data member residing on the XSUNIT data unit.

The name Mxxx, where xxx is an integer sequentially assigned as required, is assigned to

the data member. This data member is called a Secondary CS Set. XCSP continues to

execute the Primary and Secondary CS Sets to completion unless a non-fatal error is de-

tected or execution of a Functional Module is requested via an EXECUTE CS. In either

case, control is returned to XM for action.

Upon return from XCSP, XM determines the reason for interruption of the CS Processing

Phase. The ANOPP error indicator, variable NERR residing in /XCVT/, is interrogated and

if errors occurred, the module XMERR is called via XLINK to perform the Error Processing

Phase. If errors occurred then the XFM module is called directly by XM to perform the

Functional Module (F.M.) Processing Phase.

During the Error Processing Phase, depending on the system parameter JC@N, XMERRwi!I

provide the environment for the next entry to XCSP to either continue processing with the

3.5-26

EXECUTIVE MANAGEMENT SYSTEM

next CS or to continue processing with the first PR@CEED CS found in a sequential scan

forward from the CS which encountered the error. No control statements are executed

during the scan. In particular, a call statement is neither expanded nor processed. If

no PR@CEED is found in the search, XMERR provides the environment to continue processing

with the ENDCS in the Primary CS Set; this will subsequently invoke the Normal Termination

Phase upon the next entry to XCSP.

Upon return to XM from XMERR, the module XCSP is called to proceed with the CS

Processing Phase.

During the Functional Module Processing Phase, XFM brings into execution the re-

quested Functional Module (F.M.). Upon completion of the F.M. the integrity of the ANOPP

system environment is validated and insured by XFM taking corrective action as required.

Upon return to XFM, XM interrogates the ANOPP error indicator NERR to determine non-

fatal error occurrence during the F.M. Processing Phase. If error occurrence is detected

then XMERR is called via XLINK to perform the Error Processing Phase. Upon return from

XMERR, XM calls XCSP to proceed with the C$ Processing Phase.

After once calling XBS and XRT, XM cycles between calling XCSP and XFM or XMERR.

Error Philosophy: No error is detected directly within the driver XM. However,

error detection does occur within the execution phases called into execution by XM. If a

fatal error, which inhibits recovery with further processing, is detected then ANOPP is

abnormally terminated via the Error Termination Phase and there is no return to XM. If a

non-fatal error is detected within XBS, the indicator NERR is set. XM does not detect

this error return from XBS and allows XRT to be called. XRT upon completion will recognize

error occurrence during execution of XBS or itself and will abnormally terminate via the

Error Termination Phase. If a non-fatal error is detected within XCSP or XFM then the

N-ERR indicator is set and action is taken upon return to XM.

3.5-27

3.5.4 Execution Phases

EXECUTIVE MODULES

The Executive Management System (EM) includes eight execution phases corresponding

respectively to the eight tasks given in the Overview Section (Section 3.5.1). These

phases, along with the controlling EM Module, are as follows:

i. Initialization Phase (XBS)

2. Primary Edit Phase (XRT)

3. Control Statement Processing Phase (XCSP)

4. Functional Module Processing Phase (XFM)

5. Error Processing Phase (XMERR)

6. Secondary Edit Phase (XCA)

7. Normal Termination Phase (XEN)

8. Error Termination Phase (XXFMSG)

3.5.4.1 Initialization Phase (XBS)

Purpose: The XBS Module controls the Initialization Phase. The ANOPP Title Page is

printed and all initialization requirements for DBM, DSM, EM, and the General Utilities

are performed.

Input: Input to XBS is the Primary Input Stream which contains the optional AN@PP

CS and the required STARTCS CS.

Ou_pu_ :

i,

2,

3,

Data Base Structures

XSUNIT - the data unit created for subsequent usage by the Executive Manage-

ment System (EM) for scratch data members temporary to ANOPP.

DATA - the data unit created for subsequent usage by EM in processing the

DATA control statements.

Common Block Variables

Required variables in the following common blocks ape initialized:

/XCS/, /XCSFM/, /XCVT/, /XDBMC/, /XDSMC/, /XSPT/.

Control S%'Puctures

The following Control Structumes are allocated and initialized in Global

Storage:

Alternate Name Table (ANT)

Data Unit Directory (DUD)

3.5-28

EXECUTIVE MANAGEMENT SYSTEM

Member Description Blocks Table (MDBT)

User Parameter Table (UPT)

User String Table (UST)

Active Member Directory (AMD)

Data Table Directory (DTD)

Library File Directory (LFD)

Member Directory (MD) work area

Functional Description: The XBS module performs the ANOPP Initialization Phase

requirements. The Primary Input Stream is processed through The STARTCS control state-

ment. If the optional AN@PP CS is present, the values specified for the ANOPP system

parameters replace the ANOPP system default values for subsequent initialization pro-

cedures. If the AN@PP CS is omitted, the ANOPP system default values are used for sub-

sequent initialization procedures.

DSM initialization requirements include setting parameter values in the common block

/XDSMC/ and initializing Global Dynamic Storage according To The length required.

DBM initialization requirements include setting parameter values in the common block

/XDBMC/, creating the data units DATA and XSUNIT for EM utilization, and allocating

required control structures. These control structures are The DUD, DTD, AMD, and LFD. A

working storage block for the MD is also allocated. The DUD and DTD contain information

which must not be moved to other core locations when DSM consolidations occur; thus the

DUD and DTD are the first allocated blocks in GDS.

EM initiaiization requirements include setting parameter values in the common blocks

/XCVT/, /XCS/, /XCSFM/, and /XSPT/. The following control structures are allocated and

initialized in GDS: MDBT, ANT, UPT, and UST. The ANT is initialized for zero allocated

entries. The others are initialized using installation default values.

There are no additional initialization requirements imposed by the General Utilities.

Logical Description: XBS performs initialization functions for EM and calls four

additional modules to perform the remaining Initialization Phase requirements.

Immediately upon entry the module XBSTP is called to print the standard ANOPP title

page.

EXECUTIVEMODULES

ThemoduleXBSINis then called by XBS to determine the presence or absence of the

AN@PP CS in the Primary Input Stream and to initialize parameters according to either the

AN_PP CS specification or the installation default values. Detection of the STARTCS in

the Primary Input Stream is also accomplished.

The module XBSDSM is called by XB$ to initialize Global Dynamic Storage according to

the length specified e_ther by the AN@PP CS or by the installation default value.

The module XBSDBM initializes the Data Base Management System Control and data base

structures. The Data Unit Directory (DUD) and Data Table Directory (DTD) a_e insured to

be the first blocks allocated in GDS. They are not expandable tables and thus are al-

located for fixed numbers of entries which may not be exceeded during ANOPP execution.

The AMD, MD, and LFD control structures are allocated accordin E to parameterized default

values. The data units, XSUNIT and DATA, are created with co?responding entries made in

the DUD.

Upon completion of DSM and DBM initialization, XBS allocates the EM control structures

which include the MDBT, ANT, UPT, and UST. An entry in the MDBT is allocated for the

Primary CS Set, or M001 member, and the entry is initialized. Alternate names exist only

during the Functional Module Processing Phase, thus the ANT is allocated for zero-entrles.

The UPT and UST are allocated according to installation default values.

XBSTP, XBSIN, XBSDSM, and XBSDBM are the primary modules called by XBS to perform

Initialization Phase functions.

Error Philosophy: If an error occurs in allocating or initializing any control or

data base structure, then ANOPP is abnormally terminated. Fatal errors encountered while

initializing DBM and DSM are processed respectively via the member manager module MMERR

and the DSM module DSMERR. Other fatal errors invoke the EM Error Termination Phase fo_

processin E .

An error encountered in processing the AN_PP CS is not imm_4iately fatal. The

Initialization Phase continues to completion and the ANOPP error indicator, NERR, is set

to .TRUE. upon exit from XBS. ANOPP is subsequently terminated upon completion of the

Primary Edit Phase.

3.5-30

EXECUTIVE MANAGEMENT SYSTEM

3.5.4.2 Primary Edit Phase (XRT)

_: The Primary Edit Phase (XRT) module is called by the Executive Monitor (XM)

module after the Initialization Phase (XBS) module has completed its task. The Primary

Edit Phase examines and validates control statements in the Primary Input Stream and

builds a record for each CS on the root member, M001, in a format that is recognized by

the Control Statement Processing Phase (XCSP). The Primary Edit Phase allocates a new

Mxxx member name in sequential order each time a CALL CS is encountered in the Primary

Input Stream beginning with M002. A Member Description Block entry (MDB) is initialized

in the MDBT for the Mxxx just allocated. The Primary Edit Phase builds a Uxxx type member

each time an UPDATE or a TABLE CS is encountered with a S@URCE =* specification. The

S@URCE=* specification indicates that input expected for the particular CS will be found

in the input stream, beginning with the card image immediately following the CS and includ-

ing all images down to but not including the END* CS. Upon completion of its task, the

Primary Edit Phase will terminate ANOPP processing if an error was detected in the Initi-

alization Phase prior to XRT entry or in the Primary Edit Phase, or if the user option to

terminate after Edit Phase is set. Other_4ise, the Primary Edit Phase will return control

to the Executive Monitor (XM).

Input: The primary input to the Primary Edit Phase (XRT) is the Primary Input Stream

which begins with the control statement following the STARTCS statement and ends with the

ENDCS statement. Other pertinent input is described below; particular input required for

CS processing is not necessary for understanding and is not included.

i. Data Base Structures

XSUNIT - the ANOPP system scratch unit, XSUNIT, contains no members.

DATA - the DATA unit contains no members.

2, Common Block Variables

/xcs/
N_G_ - Primary-Edit-only indicator is set to .TRUE. if processing is to

be stopped when the Primary Edit Phase is complete. When the

indicator is set to .FALSE. the Primary Edit Phase returns to XM

upon completion.

/XCVT/
NERR - Executive System Logical Error indicator is set to .TRUE. if an

error was detected in the Initialization Phase (XBS). In case of

3.5-33.

EXECUTIVE MODULES

such an error, XRT edits and builds CS records but suspends writing

of those records to the M001 member. At completion of the Primary

Edit Phase processing will he terminated.

3, Control Structures

MDBT - the Member Description Block Table resides in GDS and is a system

table type I. An entry (MDB) in the MDBT is initialized for the

M001 root member. Initial settings in the MDB indicate that the

M001 root member has yet to be constructed.

Output:

lo

Uxxx

Data Base Structures

M001 - The primary output of the Primary Edit Phase is the Primary CS Set

residing as the MO01 root member on XSUNIT in a format that is

recognized by the Control Statement Processing Phase. M001 contains

a variable length control statement (CS) record for each complete

CS edited in the Primary Input Stream and a Label Record that

provides a cross-reference To each labeled CS on the M001 member.

If an error is detected, writing to the M001 member is suppressed,

but editing continues to the last CS in the Primary Input Stream.

- A Uxxx type data member in card image (CI) format resides on XSUNIT

unit for each UPDATE CS or TABLE CS with S@URCE=* specification

encountered in the Primary Input Stream. A Uxxx type data member

resides on DATA unit for each DATA CS encountered in the Primary

Input Stream. The Uxxx contains the card image input to the CS

which will be utilized in subsequent execution of the CS.

2. Common Block Variables

IXCSl
MEMCUR

IXCVTI
NERR

The current member in execution is defined by MEMCUR as M001.

On exit from the Primary Edit Phase (XRT) the executive system

logical error indicator is always set to the no error condition

of .FALSE.

3o Control Structures

MDBT - The Member Description Block entry for the (MDB) M001 root member is

in executable format. Also, an MDB entry is initialized for each

Mxxx type member name assigned as a result of a CALL CS successfully

edited in the Primary Edit Phase. Initial values in the MDB indicate

that the Mxxx member has yet to be constructed.

Functional Description: The XRT module performs all operations necessary in con-

structing the M001 root member. The Primary Input Stream is processed beginning with the

control statement that follows the STARTCS control statement. Processing terminates when

the ENDCS control statement is encountered. An unformatted variable length control state-

ment record is built for each complete control statement image in the Primary Input Stream.

The control statement recomds ame written on the M001 moot member unless an error is

detected. If an error occurs, writir4_ on the MO01 member is suppressed, hut editing and

3.5-32

EXECUTIVE MANAGEMENT SYSTEM

building CS Records continues until the ENDCS control statement is encountered. A Label

Record is built identifying the num_er of every CS Record where a label is present and

giving the label name. The Label Record is written as the last record on the M001 root

member.

As the Primary Input Stream is processed and the control statement records are

built, the control statement images are echoed if the system parameter JECH_ is set to

.TRUE. or an error is detected in building the CS Record. If an error is detected in

building the M001 member, the system parameter JECH_ is automatically set so that sub-

sequent CS images will be echoed, and writing on the M001 member is inhibited. A control

statement is considered in error under any of the following circumstances:

i. The maximum number of continuation cards allowed per CS is exceeded.

2. An unrecognizable field is detected on the CS image.

3. The form of a label field is invalid or a duplicate label is detected.

4. CS name is invalid to the Primary CS Set.

5. Syntax of the CS is invalid for the corresponding CS name.

If a CS image exceeds the maximum allowable card images for a valid CS, the control

statement is arbitrarily terminated at the end of the last allowable image and processing

continues as it would for a valid CS Record. The image immediately following this CS in

the Primary Input Stream will be read and processed as the next CS image.

A syntax check is performed on each Control Statement Record to insure that the

format of the CS meets the requirements of the particular CS name.

All references to CS labels are verified. CS names valid to the Primary CS Set

require special processing during the Primary Edit Phase, All label references on the IF

and G@T@ control statements are entered in the Label Reference Table maintained by the XRT

module. When all control statements have been processed the table is used to validate

that all labels which have been referenced are present in control statements in the

Primary Input Stream.

A comment CS is one in which the end-of-data character ($) is the first non-blank

character on the CS image. A comment control statement is included as a CS Record with

C@NTINUE substituted as the CS name.

3.5-33

EXECUTIVEMODULES

A DATACSis processedcompletelyin the PrimaryEdit Phase. C@NTINUEis substituted

as the CSnamein the CSRecordandthe imagesfollowing the DATACSin the PrimaryInput

Streamdownto the END* CSare written as a datamemberon the systemunit DATAin card

image(CI) format. TheEND*CSwhichindicates the endof input for the DATAmemberis

not includedon the member.Thedatamembernameis specified on the DATACS.

For eachCALLCSencounteredin the PrimaryInput Stream,anMxxxdatamembernameis

assignedandan MDBentry is madein the MemberDescriptionBlocksTablewith initial

settings. Theinitial setting indicates the Mxxx member has not been constructed and does

not exist on XSUNIT. Mxxx data member names are assigned sequentially where the xxx

portion of the name is Hollerith digits 002-999. The Mxxx member will be constructed

during the Secondary Edit Phase upon the first execution of the CALL CS in the CS Pro-

cessing Phase.

The UPDATE and TABLE control statements require special processing when S@URCE=* is

specified. The S@URCE =_ specification indicates that input for the UPDATE or TABLE follows

the CS in the Primary Input Stream and includes all images until an END e CS is detected.

These card images are saved on a Uxxx member with one card image per record in CI format.

A Uxxx type data member is built on the system data uni_ XSUNIT each time such an UPDATE

or TABLE CS is detected. Uxxx member names are assigned sequentially with the xxx portion

of the name being Hollerith digits 001-999.

If any CS requiring special handling of the card images immediately following in the

input stream (DATA, TABLE, or UPDATE) is in error, then the images in the input stream

will be skipped through the END W CS and will not be processed as described above.

The MOO1, root member, is considered in error if a control statement in the Primary

Input Stream is found to be in error or if an unsatisfied label reference is detected.

When the M001 member is considered in error, writing to all data units (XSUNIT and DATA)

is suspended as indicated above.

Detection of the ENDCS cont-Pol statement indicates the end of the Primary Input

Stream. If the end of the input file is detected before the ENDCS statement is encountered,

3.5-34

EXECUTIVE MANAGEMENT SYSTEM

and ENDCS statement is simulated for complete recovery. The XRT module makes a normal

return if all of The following conditions are met:

I. Primary Input STream processing is complete (an ENDCS Control statement is

detected or simulated)

2. The MO01 root member is error free (no error was detected on any edited con-

trol statement)

3. The user option to Terminate after Primary Edit Phase (N_G0) is not set.

4. The Initialization Phase was error free.

If all of These conditions are not met, The XRT module aborts upon completion of

Primary luput Stream processing.

Logical Description: Immediately upon enlTy to the XRT module, The XRTI module is

called to allocate and initialize expandable Local Dynamic Storage blocks required To

build the Control Statement Record, the Label Record, and The Label Reference Table, and

to initialize appropriate variables in The /XR_T/ common block. The CS Record block is

allocated To build the maximum length CS Record. The Label Record and Label Reference

blocks are allocated for an arbitrary number of label entries.

The XRT module then opens The M001 root member for write via scratch access and

begins To process The Primary Input Stream. The following process is iterated for each

control statement read until The ENDCS statement is encountered:

A. The XCR module is called to crack each image read from the Primary Input

Stream. XCR builds a Table from each image That includes every field detected

on The CS image preceded by an integer type code field identifying The field

as one of the ANOPP field types.

B. If The maximum number of images per CS is read and The end-of-data character

($) is not detected The XRTTC module is called To simulate a complete conTr_l

statement as if it is complete.

C. The XRTBAD module is called if urneecognizable fields are detected on the

current conTr_l statement. XRTBAD prints each unrecognizable field found on

CS.

D. The XRTBCS module is Then called To build a valid control statement record

from The cracked table produced by XCR. XRTBCS strips off the first, and

possibly the second, field in the cracked field Table looking for a valid label

name field, if present, and a CS name valid To The Primamy CS Set. The label

name, if present, and the CS name are entered in the CS Record. Upon exit

from XRTBCS, the CS Record is complete and is read To be written on The M001

root member.

3.5-35

EXECUTIVE MODULES

E, If a valid label field was detected by XRTBCS then the XRT module calls

XRTBLR module to add an entry to the Label Record. Each entry in the Label

Record identifies the number of the CS record and the label name.

F°

G,

I,

If the CS is still error free after the syntax check, XRT calls XRTLRF module

to pick up label references from IF and G_T0 control statements. Label

references are entered in a single-word entry in the Label Reference Table.

XRT then echoes the CS image if the user print option JECH0 is set or if

an error was detected in the current CS or a previous CS.

The XRTCSS module is then called to process the special CS names, DATA, CALL,

UPDATE, and TABLE. A DATA control statement is processed completely, sub-

stituting C_NTINUE as the CS name in the CS Record Preface, and writing data

input on the specified data member on the system unit named DATA in card image

(CI) format. For a CALL CS an Mxxx data member name is assigned and the member

name is entered in the CALL CS Record Preface. A corresponding MDB entry is

also made and initialized in the MDBT. Special processing is required for The

UPDATE and TABLE statements if S_URCE=_ is specified. For these control state-

ments a Uxxx member name is assigned, input for the CS is written on the

member in CI format, and The Uxxx member name is entered in the UPDATE or TABLE

CS Record Preface. Upon exit from the XRTCSS module all special CS processing

is complete.

Current CS processing is now complete and the CS Record is written on the M001

root member if the Primary Input Stream has been error free and there were no

Initialization Phase Errors.

Primary Input Stream processing is complete when an ENDCS control statement is edited

and the corresponding CS record placed on M001. Then the XRTLSA module is called to

validate that all label references (found in the Label Reference Table) have been saris-

lied. If all label references are satisfied then the XRT module writes the Label Record

on the M001 root member as the last record and enters the label record length in the

member description block entry An the MDBT for the MOO1 root member.

The M001 root member is now complete and is closed by The XRT module. XRT then

defines MO01 as the Mxxx member now in execution by setting the output variable MEMCUR.

The XRTRS module is then called to free the Local Dynamic Storage blocks used for building

the CS Record, the Label Record, and the Label Reference Table and to release Local

Dynamic Storage.

If an error was detected in the Initialization Phase or while building the M001

member, or if the N_G_ parameter is set to .TRUE., then XRT aborts. Otherwise, a normal

retur_ is made to XM.

3.5-36

EXECUTIVE MANAGEMENT SYSTEM

Error Philosophy: The Primary Edit Phase aborts via XXFMSG fatal message writer if

an error is detected while opening the MOO1 root member or if there is insufficient Local

Dynamic Storage to expand any of the XRT expandable LD$ blocks.

A missing ENDCS control statement in the Primary Edit Phase does not make further

processing impossible, so in such a case, an ENDCS statement is simulated for complete

recovery.

Errors detected in the Primary Input Stream while building the M001 member are not

immediately fatal. Errors detected in the Primary Edit Phase will result in error messages

printed before the appropriate CS image is echoed, will inhibit writing to the M001 member_

and will result in an error flag setting for the M001 member. Editing and building CS

Records will continue until the Primary Input Stream has been completely processed, and

XRT will then abort the Primary Edit Phase.

3.5-37

EXECUTIVE MODULES

3.5.4.3 Control Statement Processing Phase (XCSP)

Purpose: The XCSP module controls the Control Statement (CS) Processing Phase. The

Primary Input Stream is executed from beginning to end allowing for execution of optionally

supplied Secondary Input Stream(s). This phase is temporarily interrupted with return to

the driver XM whenever either a non-fatal error is encountered or execution of Functional

Module is requested.

Input: The primary input to XCSP is discussed below. Additional input, although

required for particular CS processing, is not necessary for understanding and is not

included.

i. Data Base Structures

XSUNIT - The unit XSUNIT contains Mxxx members and Uxxx members where xxx

is display code of an integer 001-999. M001 is the Primary CS

Set or root member and is always present. There is an Mxxx member

where xxx is greater than 00! for each Secondary CS Set which has

been brought into execution at least once via a CALL CS. There is

no limit to the number of Mxxx members which may be in completed

execution or suspended execution but there is one and only one

Mxxx which is in current execution. A Secondary CS Set is in

completed execution if it has been brought into execution via a

CALL CS and execution has been completed. A Primary or Secondary

CS Set is in suspended execution if its execution has been

temporarily interrupted by a Secondary CS Set brought into execution

via a CALL CS. A Primary or Secondary CS Set is in current

execution if it contains the next CS to be executed. Any Mxxx

member in current or suspended execution contains at least one CS

record to be executed. For M001 this is the ENDCS CS and for

Mxxx it is the RETURN CS. A Uxxx member exists for each TABLE

CS and for each UPDATE CS with SCURCE= _ specification in the

Primary CS Set. All Mxxx and Uxxx members are closed.

3.5-38

2.

3,

_°

EXECUTIVE MANAGEMENT SYSTEM

DATA The Unit DATA contains a member corresponding to each DATA CS

encountered in the Primary Input Stream during the Primary Edit

Phase.

Common Block Variables

/xcs/

MEMCUR - name of the Mxxx member in current execution

M×MDB - IDX of the Member Description Block Table (MDBT) residing in GDS

MNAME,MCUR,MCALL,MRL,MLL - position parameters for a Member Description

Block (MDB) which is an entry in the MDBT

IXCSFMI

LANT

LUPT

LUST

iDX of the Alternate Names Table (ANT) residing in GDS

IDX of the User Parameter Table (UPT) residing in GDS

IDX of the User String Table (UST) residing in GDS

Control Structures

MDBT the Member Description Block Table (MDBT) resides in GDS and is

a System Table Type 1 which contains a Member Description Block

(MDB) entry for each Mxxx name assigned.

ANT - the Alternate Names Table (ANT) is a System Table Type 1 residing

in GDS, which defines the active set of alternate names. It always

has zero entries on entry. Alternate names provide only an inter-

face capability between the F.M. and the CS Stream being executed

and thus exist only during the F.M. Processing Phase.

UPT/UST - the User Parameter Table (UPT) is a System Table Type 1 and the

User String Table (UST) is a System Table Type 2; both reside in

GDS. The UPT and UST in combination define all user parameters.

There is an entry in the UPT, and UST if required, for each user

parameter currently defined.

Initial Entry

For the initial entry to XCSP the following environment exists:

a. XSUNIT contains the M001 member and Uxxx members may or may not exist.

b. DATA may or may not contain members.

c. MEMCUR contains the name M001.

d. The MDBT contains an executed MDB for M001 with the MNAME position =

M001, MCUR position = 0, MCALL position = blanks, MRL positlon_ 0, and

MLL position>0.

The UPT, UST, and ANT contain zero entries. All data members are closed.

1. Data Base Structures

All members on the units XSUNIT and DATA are closed.

ORIglTe,ra.L} AGE
Poo

3.5-39

2.

EXECUTIVE MODULES

Common Block Variables

The primary output from XCSP upon return to the XM driver is definition of

the reason for CS Processing Phase interruption and definition of the specific

CS in a CS Set with which processing will continue upon resumption of the CS

Processing Phase. This information is provided through common block variables.

IXCVT/

NERR

/xcs/

REQ -

the logical ANOPP error indicator. It is set to .TRUE. if a non-

fatal error occurred during processing a CS thus causing the

interruption; otherwise it is .FALSE.

if an EXECUTE CS precipitated the interruption of XCSP then REQ

contains the integer corresponding to the specific Functional

Module (F.M.) requested. Integer and F.M. correspondence is

determined upon F.M. installation.

MEMCUR - the name of the current Mxxx member being executed.

MXMDB - the IDX of the MDBT in GDS. The current CS record pointer (MCUR)
in the MDB entry for the current Mxxx member is set to the CS

record resulting in the interruption.

Functional Description: The CS Processing Phase begins with execution of the first

CS in the Primary CS Set which is contained on the M001 member on XSUNIT. Execution of

subsequent control statements in the Primary CS Set is sequential through the final CS

which is the ENDCS. The sequential flow, however, may be altered by special control

statements which transfer execution to a labelled CS within the Primary CS Set. One such

CS is the G_T_. After such an alteration, sequential execution is resumed, thus the ENDCS

is eventually executed. Execution of the ENDCS invokes the Normal Termination Phase which

terminates ANOPP.

Execution of the M001 member is temporarily suspended upon execution of a CALL CS.

The CALL CS requests that a Secondary Input Stream be brought into execution and completed

before continuing execution of the current MOO1 member.

Upon the first execution of a CALL CS, the corresponding Secondary CS Set has not yet

been constructed and does not exist on XSUNIT as a Mxxx member. However, during the

Primary Edit Phase when MOO1 was constructed, an Mxxx name was assigned for each encoun-

tered CALL CS and a corresponding MDB entry in the MDBT was allocated. The MDB entry has

3.5-40

EXECUTIVE MANAGEMENT SYSTEM

initialized settings which indicate the corresponding CALL CS has not previously been

executed thus the Mxxx member does not exist. Upon the first execution of a particular

CALL CS, the Secondary Edit Phase (XCA) is invoked to validate the specified Secondary

Input Stream and to construct a corresponding Secondary CS Set residing on XSUNIT as the

Mxxx member previously assigned. The Mxxx member has the same format as the root member,

M001, and it contains the set of control statements which compose the Secondary Input

Stream in executable form. The last CS record in the Mxxx member is a RETURN CS simulated

during the Secondary Edit Phase to allow eventual return of control to M001. Upon comple-

tion of the Secondary Edit Phase, the M001 member is put in suspended execution by trans-

ferring execution control to the new Mxxx member.

Upon a subsequent execution of a particular CALL CS, the specified Secondary Input

Stream does exist in executable form as the Mxxx member previously constructed during the

Secondary Edit Phase. Thus, the Secondary Edit Phase is not invoked and the M001 member

is put in suspended execution immediately by transferring execution control to the corre-

sponding Mxxx member.

When execution control is transferred to a Secondary CS Set, execution begins with

the first CS record and continues sequentially, until the final CS, the P_TURN, is en-

countered. The sequential flow may be altered, as in the Primary CS Set. Execution of

the RETURN indicates the Secondamy CS Set has been completed and control is transferred

back to the Primary CS Set. Execution resumes with the CS immediately followlng the CALL

CS which suspended execution by the Primary CS Set.

During execution of a Secondary CS Set, a CALL CS may also be encountered. The

cumrently executing Secondary CS Set is put in suspended execution, the Secondary Edit

Phase is invoked upon the first execution of the particular CALL and execution control is

transferred to the specified Mxxx member, or Secondary CS Set. The process invoked by

encountering a CALL CS in a Secondary CS Set is identical to the process invoked by

encountering a CALL CS in the Primary CS Set.

3.5-41

EXECUTIVE MODULES

There is no limit to the number of Mxxx members which may be in suspended execution.

Upon completion of the "called" Secondary CS Set, the "calling" CS Set is brought back

into current execution and execution resumes with the CS immediately following the CALL CS

which invoked the suspended execution. Eventually as the suspended Secondary CS Sets are

one by one brought back into current execution and completed, the Primary CS Set is

brought back into current execution. The last CS record in the Primary CS Set is the

ENDCS which when executed invokes the Normal Termination Phase. The Normal Termination

Phase terminates ANOPP with no retumn to XCSP. Thus, ANOPP is terminated by invoking the

Normal Termination Phase upon execution of the ENDCS during the CS Processing Phase.

The CS Processing Phase is temporarily interrupted by two conditions. The first is

the request for a Functional Module (F.M.) to be executed via the EXECUTE CS. The second

is a non-fatal error occurrence while processing a CS record.

The EXECUTE CS is processed by XCSP as follows. The Alternate Names Table (ANT) is

constructed according to the alternate name specifications on the EXECUTE CS. The F.M.

and ANOPP executive modules will utilize the ANT during the F.M. Processing Phase which

follows XCSP interruption and return to the driver XM. A set of alternate names defined

• by the ANT is valid only during the F.M. Processing Phase. All entries in the ANT are

deleted upon completion of that Phase. Thus, the ANT always has zero entries upon entry

to XCSP. The name of The F.M. to be executed has been pre-processed during the Primary or

Secondary Edit Phase; and the EXECUTE CS record upon execution contains an integer which

corresponds to the F.M. name specified on the CS card image in the Primary or Secondary

Input Stream. The correspondence between a particular integer and a particular F.M. is

unique and was assigned when the F.M. was installed into ANOPP. This integer which is

sufficient for the F.M. P_ocessing Phase to determine, load, and execute the proper F.M.

is placed in the XCSP output variable REQ (/XCS/ common block).

If a non-fatal error occurs during the processing of any CS, the ANOPP error

indicator NERR is set to a .TRUE. value. Whether or not that CS processing was completed

or partially completed depends on the particular CS.

3.5-42

t

EXECUTIVE MANAGEMENT SYSTEM

Upon XCSP interruption and return to the driver XM, the existing environment is

defined sufficiently to allow for resuming the CS Processing Phase by a subsequent entry

to XCSP. All data members utilized are closed.

All C$ records are processed by the XCSP modules according to individual require-

ments. The card images of the CS are printed as the CS is executed depending on the

system parameter JECH_ value.

Logical Description: In the following logical description of XCSP, there is no

attempt to discriminate between the initial entry or a subsequent entry to XCSP. Although

the initial entry to XCSP always begins processing with the first CS record in M001 and a

subsequent entry resumes processing with a CS record in any Mxxx member, there is no

logical differentiation required internal to the XCSP module. The first entry to XCSP is

logically identical to any subsequent array. The environment which is defined by the

input to XCSP dictates either the beginning of CS processing or a resumption of CS pro-

cessing and both environments are processed identically.

On entry, XCSP calls the XCSPM module to initialize the environment to resume pro-

cessing with the next CS record in the currently executing Mxxx member. Local Dynamic

Storage (LDS) is initialized. The Mxxx member, defined by MEMCUR, with which execution is

to begin is opened to read. In the MDBT, the MDB corresponding to Mxxx contains the

length of the largest CS record at MRL position and the length of the label record at MLL

position. This information is used to allocate in LDS a block large enough for any CS

record on Mxxx and a block sufficiently large for the label record. The label record on

Mxxx is then read into the LDS label block to define all valid label names and the corre-

sponding CS records for this Mxxx member. The MCUR entry of the MDB contains the posi-

tion of the last CS record executed. The Mxxx member is positioned so that the next

record read will be the CS record with which execution is to resume.

Upon return from the XCSPM module, XCSP enters an indefinite iteration of processing

the next CS in the current Mxxx member. The current record pointer is incremented by one

to define the position of the CS record to be executed. Mxxx is positioned to the CS

record to be executed and it is read into the CS record block in LDS. The card image of

(?)-_:: : :; 3.5-43
. . . , ::,

i*_i_ _ , ..-

EXECUTIVE MODULES

this CS is then printed if the system parameter JECH# is set accordingly. The name of the

CS is identified and the appropriate module is called to process the CS. A list of the

valid CS names for processing by XCSP along with the name of the module called by XCSP to

execute the CS is given in Table 3.

All the modules which process a CS have the same input available and must satisfy the

same output requirements with respect to XCSP interface. The input uniformly required is

the CS record which fully defines the act to be performed. Additional input is specific

to the particular CS. The output environment which must be provided upon return To XCSP

must allow XCSP to continue its iterative processing. Specifically, the output must

include the following:

i. MEMCUR defines the currently executing Mxxx member.

2. The MCUR entry in the MDB corresponding to the current Mxxx must contain the

position of the next CS record To be executed minus i. In most cases where

the sequential flow is unaltered, the value will be unchanged from the input

value and will reference the CS record just executed. In other cases where

a control statement alters the sequential flow, the value must be reset such

that it points to the CS immediately before the next CS to be executed. This

setting always allows XCSP to increment the current record position by 1 in

continuing the iterative loop or upon a subsequent entry of XCSP when the

iterative loop is again begun.

3. The label block in LDS contains the label record of the current Mxxx.

4. The CS record block in LDS must be large enough for any CS record on the

current Mxxx. Usually the CS record for the CS just completed has remained

unaltered in the block but this is not required. The size of the LDS block, bur

not necessarily the contents, must be insured.

5. Mxxx is opened to read and is positioned such that the next record read will

correspond to the next CS to be processed.

6. The current Mxxx member is the only member open for any reason.

Most of the CS processing modules perform functions which are independent of XCSP

interface requirements. The basic input to these modules is the CS record which fully

defines the action to be performed. Other input for particular CS processing modules may

be required but is not relevant to nor dependent upon XCSP interfaces. Upon entry to

these modules the XCSP output requirements are automatically satisfied and remain un-

altered upon return to XCSP. No change has occurred to alter the sequential execution

3.5-4tl •

EXECUTIVE MANAGEMENT SYSTEM

Control SYatement Name ANOPP Executing Module

ARCHIVE XAR

ATTACH XAT

CALL XCA

C_NTINUE XC_

CREATE XCT

DETACH XDT

DR_P XDR

ENDCS XEN

EXECUTE XEX

G_T_ XG¢

IF XIF

L_AD XLD

PARAM XPA

PROCEED XPR

PURGE XPU

RETURN XRE

SETSYS XSS

TABLE XTB

UNLOAD XUN

UPDATE XUP

Table 3. Valid ANOPP Control Statement Names Processed by XCSP.

3.5-45

EXECUTIVE MODULES

thus CS processing always continues with the CS record immediately following the CS just

completed. The modules not of this type are those which process the CALL, ENDCS, EXECUTE,

G_T_, IF, and RETURN control statements.

Processing of the EXECUTE CS by the XEX module does affect XCSP execution and has

additional output requirements. The required output environment is also present on entry

to XEX as in the majority of CS processing modules. The XEX module additionally provides

upon return to XCSP the integer corresponding to the F.M. to be executed via the common

block /XCS/ variable REQ. XEX also builds the ANT in GDS to include alternate names

specified on the EXECUTE CS. Upon entry to XEX, the ANT always has zero allocated entries

and upon exit the ANT has the exact number of alternate names specified on the EXECUTE CS

which is zero or greater. Upon return to XCSP, a local variable is set to indicate that

XCSP iterative processing is to be interrupted due to a F.M. execution request.

The G_T_ CS and the IF CS usually change the execution sequence upon return to XCSP

and thus the modules XG@ and XIF must insure the output requirements for XCSP interface

are satisfied. The G@T@ CS will always transfer execution control to a CS record in the

current Mxxx member whereas the IF CS will do so conditionally. The CS to which transfer

is made is usually not but may be the CS immediately following the _T_ or IF statement.

Input to XG@ and XIF include the CS record and the label record. The position of the next

CS to be executed is determined from the label record. The Mxxx member is positioned to

this CS record and MCUR is set to that position minus I. Other output requirements are

satisfied upon entry with no need for alteration.

The ENDCS indicates the normal completion of the Primary CS Set and upon execution

the normal termination phase is invoked. The XEN module closes MO01 and terminates ANOPP

without return to XCSP. Thus XEN has no output requirements.

The CALL CS requests that the current Mxxx member be suspended and a specified

Secondary Input Stream be executed; thus, the processing module XCA must insure the

output requirements upon return to XCSP are satisfied. Upon entry to XCA, the name of the

Mxxx to be executed is contained in the CALL CS record. The MDB entry in the MDBT corre-

sponding to this Mxxx is interrogated to determine if this CALL has been executed previously

3.5-46

EXECUTIVE MANAGEMENT SYSTEM

and the executable form of the Secondary Input Stream has been constructed and is avail-

able for usage or if this CALL has not been executed previously and the executable form is

not available on Mxxx for usage. If either MRL or MLL entries in the MDB are zero, then

Mxxx has not yet been constructed; if either is non-zero then'Mxxx has been constructed.

If construction has no/ yet occurred, then XCA invokes the Secondary Edit Phase to vali-

date the Secondary Input Stream and construct the executable form, or Secondary CS Set, as

the Mxxx member on XSUNIT. See Section 3.5.4.6 for a full description of the Secondary

Edit Phase. If construction has previously occurred, then the Secondar-y Edit Phase is by-

passed.

XCA calls the module XCATRA to transfer execution to the Mxxx member containing the

requested Secondary CS Set. The current Mxxx member is closed and the LDS blocks for the

CS record and label record are freed. MEMCUR is set to the new Mxxx member to be exe-

cuted. MCUR in the MDB corresponding to the new Mxxx member is set to zero (0) indicating

the next CS to be executed is CS record number one (I). XCATRA then calls XCSPM to perform

initialization functions identical to those performed upon entry to XCSP. XCSPM opens

MEMCUR to read, allocates an LDS block sufficient for the laegest CS record on MEMCUR,

allocates an LDS block for the MEMCUR label record and reads the label record into the

block, and positions MEMCUR to the next CS record to be executed which is the first CS

record. Upon completion of the XCATRA module the currently executing Mxxx member upoD

entry to XCSP has been suspended and the specified Mxxx has been brought into current

execution. The output requirements for retumn to XCSP are satisfied.

Upon execution of a RETURN CS the module XRE is called by XCSP to reverse the process

performed by XCA and return control to the "calling" or suspended Mxxx. The "called"

member (MEMCUR upon entry to XRE) is closed, the LDS blocks are freed and LDS is released.

The name of the "calling" Mxxx member, defined by the name in the MCALL entry in the MDB

of the "called" Mxxx, is retrieved and placed in MEMCUR, thus, bringing back into exe-

cution the suspended Mxxx. The module XCSPM is then called to complete the output require-

ments. XCSPM opens MEMCUR to read, allocates an LDS block sufficient fo_ the largest

CS record on MEMCUR, allocates an LDS block for the label record of MEMCUR and reads the

3.5-47

EXECUTIVE MODULES

label record into the block, and positions MEMCUR to the CS record following the CALL

which invoked the suspension. Upon completion of XCSPM the return of control is complete

and the output requirements for XRE return to XCSP are satisfied.

When the current CS has been completely processed by the appropriate module and

return is made to XCSP, the iTerative processing continues by processing the next CS. The

iterative processing of CS records continues either until the ENDCS is executed to termin-

ate ANOPP normally or until one of two conditions is encountered. The first condition is

the occurrence of a non-fatal error within a CS processing module. Upon return from a CS

processing module within which an error occurred, the ANOPP logical error indicator, NERR,

is set to .TRUE.; if no error occurred it is .FALSE. The second condition is the

execution of an EXECUTE CS. Upon return from the XEX module, XCSP sets the local variable

ISTAT to 1 (one) indicating a F.M. execution request. If either NERR or ISTAT is set to

.TRUE. or 1 (one) respectively, then The iTerative CS processing is interrupted and XCSP

prepares for return to XM. The LDS blocks are freed and the current Mxxx (MEMCUR) is

closed. XCSP then returns to XM.

Error Philosophy: There are two Types of errors which may occur within XCSP pro-

cessing, fatal and non-fatal errors.

A fatal error is the detection of a condition which inhibits further XCSP processing.

Fatal errors include: a) conditions which should not exist logically within ANOPP, such

as the XSUNIT does not exist when an attempt to open an Mxxx member is performed, and b)

conditions which prevent further processing to be productive, such as insufficient LDS for

required XCSP block allocations. Fatal errors may occur within any module called by XCSP

and ANOPP and are abnormally terminated immediately. Most XCSP called modules abort via

The EM auxiliary module XXFMSG which invokes the Error Termination Phase (see Section

3.5._.8 for full description). However, The modules which process the Data Base Manage-

ment control statements generally utilize the MMERR and TMERR auxiliamy modules. Fatal

Member Manager errors occurring during processing of Member Manager control statements

(ARCHIVE, ATTACH, CREATE, DETACH, DR_P, L_AD, PURGE, and UNLOAD) abort via MMERR. Fatal

errors occurring dumlng processing Of Table Manager control statements abort via TMERR.

3.5-_E;

EXECUTIVE MANAGEMENT SYSTEM

A non-fatal error is the detection of an abnormal condition during CS processing

which does not inhibit further productive XCSP processing. Generally, these are user

errors resulting from invalid Primary or Secondary Input Streams such as a non existent

unit or member specified as a Table Input Stream. The CS processing module detecting the

error prints an informative message via the EM auxiliary XXNMSG, the MM auxiliary MMERR,

the TM auxiliary TMERR, and the auxiliaries XLDERR and XUNERR. NERR is set to .TRUE.

before returning to XCSP. Before attempting to continue CS processing, XCSP will detect

the NERR setting and return to the driver XM for error processing.

3.5-49

EXECUTIVE MODULES

3.5.%.4 Functional Module Processing Phase (XFM)

P____: The XFM module controls the Functional Module (F.M.) Processing Phase. The

F.M. specified on the EXECUTE CS which interrupted the CS Processing Phase is brought into

execution. Upon completion of the F.M. the integrity of the ANOPP system environment is

validated and insured before return to the driver XM.

Input :

l. Data Base Structures

All data members are closed.

2. Common Block Variables

IXCSl

REQ

NXLEVI -

NFM

the integer corresponding to the P.M. to be executed. The corre-

spondence is determined when a F.M. is installed into ANOPP. For

each valid P.M. name which may appear on ah EXECUTE CS there is a

unique integer in the range (NXLEVI+I) through (NXLEVI+NFM) inclusive.

The integer corresponding to the requested F.M. was placed in REQ

during the CS Processing Phase when the EXECUTE was encountered.

the number of executive modules which are called directly by XM and

are loaded at segmentation level i. These include XBS, XRT, XCSP,

and XMERR. The F.M. integer assignments begin with NXLEVI+I.

number of F.M. installed. This includes the F.M. names which are

available for F.M. testing before permanent installation. These

names are FMI, FM2, FM3, FM4, FMS.

/XCSFM/

LANT - the IDX of the Alternate Names Table in GDS.

3. Control Structures

ANT the Alternate Names Table resides in GDS and is a System Table Type

1 which contains an entry for each alternate name specified on the

EXECUTE CS.

Output:

1. Data Base Structures

All data members are closed.

2. Common Block Variables

/xcs/

REQ

/XCVT/

NERR

- the value is zero indicating the P.M. Processing Phase is complete.

- the ANOPP logical error indicator is set to .TRUE. if an error oc-

curTed within the F.M. or during the post F.M. "cleanup" procedures

3.5-50

EXECUTIVEMANAGEMENTSYSTEM

whichinsured the systemintegrity. If no error occurred,NERRis
.FALSE..

3, Control Structures

ANT the Alternate Names Table in GDS contains no entries. It is

initialized to zero allocated and zero current entries.

Functional Description: The F.M. which corresponds to the integer REQ is loaded and

brought into execution. Upon completion of the F.M. the integrity of the ANOPP system

environment is validated and insured.

The functions required to validate and insure the integrity of the ANOPP system

environment upon completion of a F.M. are called cleanup procedures. Cleanup procedures

validate conditions and perform corrective action if the condition is unsatisfied. The

conditions validated and the corrective action taken are described below:

io

2.

Condition: LDS has been released

Corrective Action if condition unsatisfied: LDS is released

Condition: All user consolidation locks on LDS and GDS (excluding the master

lock on GDS) are released.

Corrective action if condition unsatisfied: release user locks.

3. Condition: All data members are closed.

Corrective action if condition unsatisfied: logically close any data member

which is open. A logical close of a member is performed by deleting the member

from all MM tables indicating activity on the member. If the member was open

to write (direct or scratch) the newly written complete or partial member is

lost as if the write had never occurred.

4. Condition: all data tables are closed.

Corrective action if condition unsatisfied: any opened data table will be

logically closed and released from core residence. If the table was opened

to alter, the altered table is not written to the member as in a normal close;

thus, the altered table is lost for subsequent retrieval.

If any of the conditions is unsatisfied, thus resulting in corrective action, the

F.M. Processing Phase is considered to be in error and NERR is set to .TRUE.

The alternate names defined on the corresponding EXECUTE CS are valid only during

execution of a F.M., thus the ANT is initialized to zero allocated entries and zero

current entries to indicate a null set of names.

Upon completion of the cleanup procedures and ANT initialization, the F.M. Processing

Phase is terminated and return is made to the driver XM.

3.5-51

EXECUTIVE MODULES

Lo_ica! Description: Upon entry to XFM, REQ is validated to insure the integer

corresponds to a F.M. insta_ed in the ANOPP system. REQ must satisfy the following

conditions:

NXLEVI<REQ<__NXLEVI + NFM

The module XLINK is then called to load and execute the corresponding F.M.

XLINK contains the one-_prone correspondence of integers and F.M. names and calls the

appropriate F.M.. Upon completion of the F.M., the XLINK modules returns to XFM.

XFM continues by performing the cleanup procedures via calls to the modules XFMDSM,

XFMMM, and XFMTM.

XFMDSM validates that LDS has been released and that all user consolidation locks on

LDS and GDS have been released. If necessary LDS is released, a&l user locks on LDS and

GDS are released, and the indicator NERR is set to .TRUE..

XFMMM validates that all data members are closed. If a data member is found to be in

an open state then the member is removed from the MM tables AMD, MCB and NERR is set to

.TRUE.. If the member had been opened to write (direct or scratch) the member is closed

as if the open had never occurred; thus, the newly written member is unavailable on a

subsequent open.

XFMTM validates that all data tables are closed. If a data table is found to be in

an open state, it is removed from GDS core residence and NERR is set to .TRUE.. If the

table had been opened for alteration, the table is closed as if it had never been opened;

thus, the altered table is not written to the data unit for subsequent retrieval.

Upon completion of the cleanup procedures the module XFMANT is called to zero the

ANT. The GDS block containing the ANT is f-_eed and a new GDS block allocated for zero

entries in the ANT is requested. The ANT is intialized to zero allocated and zero current

entries.

XFM is completed and returns to XLINK thereby returning to the driver XM.

'3.5-52

EXECUTIVE MANAGEMENT SYSTEM

Error Philosophy: If an error has occurred during execution of a F.M., then the

ANOPP error indicator NERR has been set to .TRUE. before return from the F.M. to XFM via

XLINK.

Regardless of the error return status from the F.M., the cleanup procedures are

executed and if a corrective action is required NERR is set to .TRUE.

Upon return from XFM to XM if NERR is set to .TRUE. then XM determines action to be

taken.

ORIGJ:N'AL' P_'-z,-_EI'_IS

OF POOR, QUALI';i_
3.5-53

EXECUTIVE MODULES

3.5._.5 Error Processing Phase (XMERR)

Purpose: The module XMERR controls the Error Processing Phase. A non-fatal error

was encountered during processing of a control statement in either the CS Processing Phase

or the F.M. Processing Phase. Depending on the value of the system parameter JC@N, either:

I) the CS sequence is searched sequentially forward for either a PR#CEED CS or the ENDCS

CS whichever is encountered first; or 2) no action is taken allowing the CS Processing

Phase to resume with the next CS following the CS in error.

i. Data Base Structures

XSUNIT - the unit XSUNIT contains all Mxxx members constructed by the

Primary and Secondary Edit Phases. All Mxxx members are closed.

2. Common Block Variables

IXCSl

MEMCUR - name of the Mxx× member on XSUNIT in current execution.

MXMDB - IDX of the Member Description Block Table (MDBT) residing in GDS.

MNAME, MCUR, MCALL, MR[,, MLL position parameters for a Member Description

Block (MDB) which is an entry in the MDBT.

3.

/XSPT/

Jean the logical system parameter indicating the action to be taken by

XMERK. If JC_N = .TRUE., then no action is taken. If JC_N =

.FALSE., then the CS sequence is searched for a PROCEED CS or the

ENDCS whichever occurs first.

Control Structures

MDBT - the Member Description Block Table (MDBT) residing in GDS. There

is an MDB, or entry, for each Mxxx name assigned. The MDB contains

descriptive and status information about the Mxxx.

2o

Data Base Structures

XSUNIT - all Mxxx members remain unchanged and are closed.

Common Block Variables

MEMCUR - the name of the Mxxx in current execution resulting from action

taken by XMERR. If a search was perform.cd then Mxxx contains the

first encountered PROCEED or the ENDCS. If a search was not per-

formed Then MEMCUR is unchanged from the input value.

3.5-54

3. Control Structures

MDBT

EXECUTIVE MANAGEMENT SYSTEM

- if a search was not performed than all MDB entries are unchanged.

If a search was performed, then the value of the contents of the

MCUR position in the MDB of each Mxxx member involved in the

search process has changed. This value in the MDB corresponding

to MEMCUR is the position of the CS record which immediately pre-

ceeds the found PR@CEED or ENDCS CS record. (This is necessary

for the CS Processing Phase to resume with the PROCEED or ENDCS.)

This value in the MDB corresponding to any other Mxxx involved

in the search is the position of the last CS record in Mxxx which

is now in completed execution.

Functional Description: The Error Processing Phase determines the action to be taken

whenever a non-fatal error occurs during the processing of a CS. The error could have

been encountered during the CS Processing Phase or during the F.M. Processing Phase. If

it occurred in the former phase, then the CS was directly responsible for the error. If

it occurred in the latter phase, which is always the result of an EXECUTE CS being pro-

cessed, then the error was not directly caused by the EXECUTE CS but instead by the F.M.

which was executed. In both cases, however, the CS last processed by the CS Processing

Phase is considered by XMERR to be in error and the CS image is printed with an error

message.

Further action to be taken is determined by the system parameter JC@N. If JC_N is

set to .TRUE. on entry, then no further action is taken. Subsequently, when the CS

Processing Phase is resumed by the driver XM, processing will continue with the CS im-

mediately following the CS in error. If JC_N is set to .FALSE. on entry, then a search is

performed to locate either the first PR@CEED CS after the CS in error or if no PROCEED

is found, then the ENDCS CS. Subsequently, when the CS Processing Phase is resumed by the

driver XM, processing will resume with the PROCEED or ENDCS.

The search for the PR@CEED begins w_th the CS following the CS in error. The search

continues sequentially forwal-d through the current CS set in execution. If during the

search a CALL CS is encountered_ it is not processed and the Secondary CS Stream specified

is not brought into the search process. The CALL CS is skipped as any other CS. If the

current CS Set _s a Secondary CS Set and it is exhausted without a PR@CEED CS, then upon

encountering the RETURN CS, the Mxxx containing the Secondary CS Set is closed and pro-

cessing returns to the CS immediately following the CALL CS in the calling member. This

3.5-55

EXECUTIVE MODULES

procedure continues until a PR@CEED CS is detected or until processing returns to the

Primary CS Set and an ENDCS CS is detected. On exit from XMERR, all Mxxx members used in

the search are closed.

Logical Description: Immediately upon enYTy XMERR calls the XCSPM module to open the

currently executing Mxxx member, allocate local core to receive a control statement

record from the Mxxx member, and position the Mxxx member to the next CS record.

Upon return from XCSPM, the Mxxx member is positioned to the CS in error via the

MMSKIP service module. The CS in error is gotten from the current Mxxx via the MMGETR

service module. The CS record is echoed with an appropriate message telling the user that

the current CS resulted in a system error and execution will continue with the next CS

record or with the next PR@CEED CS, dependir_g on the system parameter JC@N.

If the system parameter JC_N is set to .TRUE., indicating that execution should

continue with the CS record following the CS in error, then the system parameter MEMCUR is

unchanged and the number of the CS record in current execution on MEMCUR (the CS in

error) is also unchanged. This insures that the CS record to be executed next by the

Control Statement Processing Phase (XCSP) will be the CS immediately following the CS in

error.

If the system parameter JC_N is set to .FALSE., this indicates that execution should

not continue with the CS following the CS in erTor, but instead should continue with the

next PROCEED CS. If a PROCEED CS is not detected, then execution should continue with the

ENDCS CS.

In the case that JC_N is .FALSE., XMERR sequentially reads CS records from MEMCUR,

bringing each into Local Dynamic Storage via MMGETR, until a PROCEED or ENDCS CS is de-

tected. In the event that a RETURN CS is detected, the current Mxxx is closed, system

parameter MEMCUR is defined as The calling Mxxx, the calling Mxxx is opened, and the

search continues in the calling member. Detection of a CALL CS in the current CS Set does

not alter the course of the seamch. The CALL CS is skipped and the search continues with

3.5-56

EXECUTIVE MANAGEMENT SYSTEM

the CS immediately following the CALL. This procedure is iterated, and the number of the

CS record in current execution on MEMCUR is incremented, until a PROCEED or ENDCS CS is

detected.

On exit from XMERR, the name of the current Mxxx member is defined by the system

parameter MEMCUR, and the number of the CS record in current execution for the MEMCUR Mxxx

has been defined dependent on the value of the system parameter JC@N.

Error Philosophy: The XMERR module aborts only if an error is detected by MMGETR

while trying to get the next CS record from the current Mxxx member.

3.5-57

3.5.4.6 Secondary Edit Phase (XCA)

EXECUTIVE MODULES

Purpose: The Secondary Edit Phase module (XCA) is called by the Control Statement

Processing Phase (XCSP) to process a CALL control statement. If this is the first execu-

tion of the CALL CS, XCA builds an Mxxx member containing CS records that correspond to

the control statements in the Secondary Input Stream. If the Mxxx member is built success-

fully, or if the Mxxx has been previously executed, the Secondary Edit Phase provides the

environment required for the CS Processing Phase to resume execution with the first con-

trol statement on the new Mxxx member.

Input: Primary Input to The Secondary Edit Phase is the Secondary Input Stream

residing in card image (CI) format on the member specified as DU(DM) on the CALL CS.

Pertinent input is described below. Other input required for processing but not necessary

for understanding, is not included.

i. Data Base Structures

DU(DM) - the data member specified by the DU(DM) on the CALL CS contains

the Secondary Input Stream in CI format.

2. Common Block Variables

/xcs/

MEMCUR - the name of the Mxxx member in current execution on entry to XCA

is defined by MEMCUR. MEMCUR names the Mxxx member where the

CALL CS resides.

3,

/XCVT/

NERR the executive system logical error indicator NERR is always .FALSE.

on entry to XCA, indicating that no errors have been detected in

processing.

Control Structures

MDBT - the Member Description Block Table resides in GDS and is a system

table type i. The MDB entry for the Mxxx member being called into

execution exists in the MDBT in initialized or executable format.

The values in an initialized MDB indicate that the Mxxx does not

exist, whereas the values in an executable MDB indicate that the

Mxxx has been constructed.

Output:

i. Data Base Structures

Mxxx - the fimst time a £zLL CS is executed, the Secondaz,y Edit Phase

validates and builds the Mxxx member being called into execution.

Mxxx contains a variable length control statement record for each

3.5-58

EXECUTIVE MANAGEMENT SYSTEM

complete CS edited in the Secondary Input Stream and a Label Record

that provides a cross-reference to each labeled CS on Mxxx. • The

member is in a format recognized by the CS Processing Phase. If

an error is detected in the Secondary Input Stream, writing to the

Mxxx member is suppressed but editing continues until the Secondary

Input Stream has been exhausted.

2. Common Block Variables

/XCg/

MEMCUR

IXCVT/

NERR

the name of the current Mxxx type member in execution. If the

CALL CS has been processed without error, MEMCUR indicates the Mxxx

to which control has been transferred and the Mxxx in execution on

entry has been closed. But if errors have been detected in process-

ing the CALL CS, MEMCUR is unchanged from its entry value.

- the executive system logical error indicator. If an error is de-

tected in processing the CALL CS, NERR is set to .TRUE. on exit.

3. Control Structures

MDBT - the first time a CALL CS is executed and an Mxxx member is built,

a Member Description Block entry (MDB) is put into executable format

for the Mxxx built.

Functional Description: The XCA module performs all operations necessary to process

a Secondary Input Stream as a result of a CALL CS. If it is the first execution of the

CALL CS, then an Mxxx type member must be built from the card images in the Secondary

Input Stream. The Secondary Input STream resides on the member specified by the DU(DM)

field on the CALL CS image. The name of the Mxxx member to be built is found in the CALL

CS record.

The Mxxx member is built in a single sequential pass on the Secondary Input Stream.

As each CS in the Secondary Input Stream is processed, substitutions are made in the CS

image from optional replacement names specified on the CALL CS.

Once substitutions have been made, the new CS image is used To build an unformatted,

variable length CS record. CS records for the Secondary CS Set are edited and built in

the same manner used to build CS records for the Primary CS Set.

Certain CS names, or forms of a CS, that were valid in the Primary Input Stream are

not valid in the Secondary Input Stream. The S_URCE =_ form of the UPDATE and TABLE

3.5-59

EXECUTIVE MODULES

control statements are not valid to the Secondary CS Set. Neither is the DATA CS valid to

the Secondary CS Set.

A CALL CS is processed the same in the Primary Input Stream and the Secondary Input

Stream. An Mxxx member name is assigned and an MDB entry initialized each time a CALL CS

is encountered.

If an end-of-member condition is detected, a RETURN CS is simulated for internal

control. Detection of the RETURN CS indicates the end of the Secondary Input Stream.

As the Mxxx member is built, the MDB for the Mxxx is put into executable format.

If the Mxxx member is built successfully, or if the Mxxx was built and executed

previously (due to a previous processing of the CALL CS), then XCA transfers control to

the new Mxxx so that the CS Processing Phase (XCSP) will resume execution with the first

CS record on the new Mxxx. In order to provide such an environment, the following steps

must be done:

i. Close the Mxxx member that was in execution on entry to XCA.

2. Open the new Mxxx to read and position to the first CS record on the member.

3. Free LDS blocks for the Mxxx member that has been closed and re-allocate LDS

blocks as required for processing the new Mxxx member.

4. The MEMCUR parameter that defines Mxxx member in current execution is set to

name of new Mxxx.

If the Mxxx member was not built successfully, then the entry environment is un-

changed. Control is not transferred to the new Mxxx. Before exit, an error indicator is

set to inform the caller that an error was detected in the Secondary Edit Phase.

Lo_icalDescription: Immediately upon entry to the XCA module, the XCAI module is

called to open the member containing the Secondary Input Stream and the Mxxx member to be

built. In addition, XCAI allocates expandable LDS blocks necessary for building the Mxxx

Label Reference Table (LRT) and Label Record Table (LREC), and fixed length LDS blocks for

building the Substitution Table (LSUB) and the new CS Image Block (NCSIB).

3.5-60

EXECUTIVE MANAGEMENT SYSTEM

The XCA module then calls XCABST to build the Substitution Table from the replacement

values, if present, specified on the CALL CS. If at least one replacement set is speci-

fied on the CALL CS, XCABST cracks the CALL CS image without converting fields (XCRWC).

Replacement sets appear in the form oldvalue = newvalue on the CALL CS. To build the

Substitution Table, the = fields are stripped out and only the old- and newvalue fields

are retained. Upon completion, the Substitution Table contains the type code and corre-

sponding oldvalue field and the type code and corresponding newvalue field for each

replacement set.

Once the Substitution Table is complete, the following process is iterated until the

Secondary Input Stream has been exhausted (a RETURN CS detected or simulated):

The XCANCS module is called to produce a new CS image by getting the next CS

image from the Secondary Input Stream and making field substitutions as required by

the CALL CS. Field substitutions are made according to values in the Substitution

Table previously bully on entry _o XCA. Any field type may be replaced by any other

field type. The comment portion of the original CS, if present, is retained. If

the new CS image with substitution causes the comment portion to overflow a card

image, then the comment portion is truncated accordingly. If the CS image without

comment exceeds the maximum allowable card images, then an end-of-data character is

simulated and the CS is truncated.

If an end-of-member condition is detected before a RETURN CS is detected, a

RETURN CS is simulated for internal control. If an end-of-member condition is

detected on an incomplete CS, then that CS is replaced by a RETURN CS.

If the current CS is found to be in error the system parameter JECHO is

automatically turned on so that subsequent images will be echoed. A CS is considered

in error if the original CS image exceeds maximum allowable images or if the new

CS image without comment portion exceeds maximum allowable images.

When the new CS image is complete, the XCAMXX module is called to build and

validate a control statement record valid for a Secondary CS Set. The CS record in

built in the same manner used to build control statement records for the MOO1 root

member. XRT sub-modules are called to perform the following functions:

i. Update label record table for Mxxx being built (XRTBLR)

2. Update label reference table for Mxxx being built (XRTLRF)

3.5-61

EXECUTIVE MODULES

3. Perform syntax check according to format requirements for particular

CS (XRTSYN)

4. Simulate CS complete condition if CS image exceeds maximum cards per

CS with no valid CS terminator (XRTTC)

5. Get CS record into format ready to be written on new Mxxx (XRTBCS)

Comment cards (CS where first non-blank character is end-of-data character) are

included on the new Mxxx as a CS with C_NTINUE substituted as the CS name.

The XCAMXX module allocates and initializes an MDB entry in the MDBT for each

CALL CS processed. The XRT sub-module XRTCAL, is called to form the new Mxxx name

assigned to the CALL CS and initialize the MDB.

If a CS error is detected, the Mxxx member is considered to be in error. NERR

is set to .TRUE. and writing to the Mxxx member is inhibited, although editing and

building CS records continues. A CS is considered in error under any of the following

circumstances:

i. Unrecognizable field detected on CS image

2. Invalid label field (either invalid form or duplicate labels)

3. Invalid CS name

4. Invalid syntax check for CS name

5. Maximum images (MAXCC) exceeded

Once the Mxxx member has been built, the XRT sub-module XRTLSA is called to insure

that all label references on the member are satisfied. If all labels have been satisfied

and the Mxxx member is error free, then the label record is written on the Mxxx member as

the last record.

The XCACL@ module is then called to perform the closing functions. XCACL_ frees the

Substitution Table (LSUB), the New CS Image Block (NCSIB), the Label Record Block (LREC),

and the Label Reference Table (LRT) in Local Dynamic Storage. XCACL_ also closes the

Secondary Input Stream member and the new Mxxx member just built.

XCA then completes the MDB entry in the MDBT for the new Mxxx member by inserting in

the MDB the name of the Mxxx that called the new Mxxx member just built. The calling

member is the Mxxx member that was in current execution on entry to XCA.

If the new Mxxx member was successfully built, or if the Mxxx member was previously

executed then the XCATRA module is Called to transfer execution control to the new Mxxx.

3.5-62

EXECUTIVE MANAGEMENT SYSTEM

XCATRA first closes the Mxxx member that was in current execution on entry to XCA.

Then Local Dynamic Storage blocks are freed and re-allocated according to the requirements

for the new Mxxx. The new Mxxx is opened to read and the label record is validated and

moved to the newly allocated LDS Label Record Table. Then the new Mxxx is positioned to

read the first CS record.

If no errors have been detected on exit from XCA, then XCATRA has set up the appro-

priate environment such that XCSP will resume execution with the first CS record on the

new Mxxx member.

Error Philosophy: The Secondary Edit Phase aborts via the XXFMSG fatal message

writer if an error is detected when opening the new Mxxx member to be written.

The Substitution Table is allocated for exact requirements of replacement values

specified on the CALL CS. An error is indicated (possibly in the replacement fields

specified on the CALL CS) if the number of words moved to the table in building does not

match allocated table length. In such a case, XCABST aborts via XXFMSG fatal message

writer.

When building a CS record for the new Mxxx member, XCAMXX aborts via XXFMSG if the CS

record block overflows because the allocated length was not the maximum required or if an

unexpected Member Manager return status is detected while reading the Secondary Input

Stream Member.

Several other errors are not immediately fatal but do result in ultimate termination

of processing at the end of the Secondary Edit Phase. If the Secondary Input Stream

member does not exist or is not in card image (CI) format, logical error indicator NERR is

set and a message is printed. Also, the error indicator is set and message printed if LDS

is insufficient to allocate all of the tables required for processing.

Edit errors detected in the Secondary Edit Phase cause writing on the new Mxxx member

to be suspended. However, editing and building CS records continues until the Secondary

Input Stream has been completely processed. Error messages are printed before the corre-

3.5-63

EXECUTIVE MODULES

sponding CS record is echoed. If a CS error is detected, the system parameters NERR and

JECH@ are set to .TRUE. and the cumrent CS is echoed.

A CS image that exceeds the maximum card images (MAXCC) per CS falls under the

category of edit errors above. The control statement is arbitrarily terminated at the end

of the last allowable image and processing continues as for a valid CS. An incomplete CS

detected at an end-of-member is not processed, but instead is replaced by a RETURN CS

which is processed as a valid CS.

3.5-64

EXECUTIVE MANAGEMENT SYSTEM

3.5.4.7 Normal Termination Phase (XEN)

Purpose: The EM module XEN is called during the Control Statement (CS) Processing

Phase by XCSP to process the control statement ENDCS. The ENDCS indicates that the set of

control statements provided by the user as card image input to ANOPP (i.e._ the Primary

Input Stream) has been completely processed and ANOPP termination is desired. The process

of terminating ANOPP upon normal completion of processing is called the Normal Termination

Phase and is controlled by XEN.

Input: The M001 member on unit XSUNIT_ which contains the executable form of the

Primary Input Stream, is open to read.

Output: There is no output since ANOPP is terminated.

Functional Description: The Normal Termination Phase includes printing an informa-

tive message indicating ANOPP normal termination, closing the opened member M001, and

halting further execution.

Lg_ical Description: XEN is a simple module requiring no calls to lower level

modules. The required message is printed, MOO1 is closed via a MM call, and execution is

halted via the F_RTRAN ST_P command.

Error Philosophy: No error condition is encountered.

.... --, --{

.' Iiii_ _._

-: 3.5-65

EXECUTIVE MODULES

3.5.4.8 Error Termination Phase (XXFMSG)

Purpose: The Error Termination Phase is controlled by the Executive Management

System (EM) auxiliary module XXFMSG. It is called by any EM module which detects an error

condition which inhibits further meaningful execution (i.e., a fatal error).

Termination of ANOPP will result with an informative message as to the cause.

In__n2___:The calling module via an argument list provides The calling module name,

defines the message number to be printed, and provides additional descriptive information.

The same message number may be requested by several calling modules with varying descrip-

tive information. Four arguments are provided for descriptive information with usage

dependent upon the message. The message number range is 1-999. See Appendix C.

Output: Message text on ANOPP output file including specified error message and a

traceback via XEXIT.

Functional Description: XXFMSG identifies and prints the message requested. Mes-

sages have two parts. The first part of all messages is fixed as follows:

e** EXEC ERROR (ERROR NUMBER ---) _ (CALLER ---)

The second part of all messages is unique for each message number and describes the cause

of erroP.

A traceback which prints module names from the calling module to the driver XM is

provided and ANOPP is Then terminated.

Logical Description: Identification and message printing is performed directly by

XXFMSG. F_RTRAN WRITE statements with pre-defined F#RMATS are utilized. The General

Utilities XTRACE and XEXIT are called to perform the traceback and the ANOPP termination

respectively.

Error Philosophy: The message number is validated upon entry with no further possi-

bility of error occurrence.

3.5-66

EXECUTIVE MANAGEMENT SYSTEM

3.5.5 Auxiliary Modules

An auxiliary modules does not perform a function which is unique to a specific exe-

cutive phase or group of EM modules but instead performs a function common to many EM

modules during various executive phases. It is a general purpose module available for

usage only by other EM modules.

3.5.5.1 Fatal Error Message Writer (XXFMSG)

Purpose: The XXFMSG module is utilized to print an informative error message when-

ever a fatal error is encountered and detected by an EM module and to terminate ANOPP.

XXFMSG controls the Error Termination Phase of EM and is discussed in Section 3.5.4.8.

It is called by many EM modules during the various executive phases whenever an error

condition which inhibits further meaningful execution is detected.

For full description of this module, see Section 3.5.4.8.

3.5.5.2 Non-Fatal Error Message Writer (XXNMSG)

Purpose: The XXNMSG module is utilized to print an informative error message when-

ever a non-fatal error is encountered and detected by an EM module.

Input: The calling module via an argument list provides the calling module name,

defines the message number to be printed, and provides additional descriptive information.

The same message number may be requested by several calling modules with varying descrip-

tive information. Four arguments are provided for descriptive information with usage

dependent upon the particular message. The message number range is 1001-1999.

Output: There is no output upon return to the calling module.

Functional Description: XXNMSG identifies and prints the message required. Messages

have two parts. The first part of all messages is fixed as follows:

*** EXEC ERROR (ERR#R NUMBER ---) *** (CALLER ---)

The second part of all messages is unique for each message number and describes the cause

of error.

3.5-67

EXECUTIVE MODULES

Logical Description: Identification and message printing is performed directly by

XXNMSG. F@RTRAN WRITE statements with pre-defined F_RMATS are utilized.

Error Philosophy: The message number is validated upon entry and the Error Termina-

tion Phase is invoked via the XXFMSG auxiliary if found to be invalid.

3.5-68

EXECUTIVE MANAGEMENT SYSTEM

3.5.6 Hierarchy Charts

A hierarchy chart is a graphical representation of the logical relationship between

modules. Figures 1-24 are the hierarchy charts for the Executive Management System (EM).

In general, only EM modules appear as a block entity in the charts and all EM modules

appear at least once. The charts are in alphabetical order with respect to module name

except for Figure 1 which is the hierarchy chart for the driver XM from which all other EM

modules, except EM auxiliary modules, derive. A hierarchy chart for each auxiliary

module is also among the alphabetized charts.

A module which is not part of EM but is called by an _I module is, in general, not

shown as a block entity but is listed at the bottom of the chart. The module may be an

ANOPP executive module which is part of the Data Base Management System (DBM), the Dynamic

Storage Management System (DSM), or the General Utilities. It also may be a subprogram

provided by one of the CDC operating system libraries. In either case, the module is

generally of a service or utility nature and may be called many times by various EM

modules. One of these service type modules may, however, be of sufficient design im-

portance to the calling EM module that it should receive more emphasis than simply being

listed. In these cases, the non-EM module is represented as a block entity for logical

emphasis and is noted as such on the chart.

Symbols and heads used in the hierarchy charts are given below:

NAME

purpose

NAME - module name

purpose - brief description

indicates lower module is called by the

higher module

in upper right corner of module block

indicates module is expanded as a

separate hierarchy

3.5-69

ANOPP Modules Called:

EXECUTIVE MODULES

a list of DBM, DSM, and General Utility

Modules called by the modules in this

figure

CDC System Library

Subprograms Called:

a list of subprograms called by the

modules in this figure and which are not

part of ANOPP but are provided by CDC N_S

operating system libraries

3.5-70

EXECUTIVE MANAGEMENT SYSTEM

H 0

X 2D--d
¢D C

O

.:¢

°_

o
O

:E _4 ¢n

Z ,C

0
Z

o

u)

,-I

0
-

0
Z
<

J=
¢J

c)

rO

-,'-I
"v

:E
X

v_

3.5-71

EXECUTIVEMODULES

(..;[._.].,-IX

_ mZ
U_ o _

X _.,4

E-.

c.9

m_ t)

_,-1 E

ea

.-4 _-_

°,.'t

4_

rO
r',

0

.,4

_C
X

c_4

.,4

3.5-72

O

4J

N o

X _ ,._
o,-I_
4J
..H

o9 _ r_
H

X

o

- °

C_ .,-I I_
O_ _ C.g
: _l_
X

bO

IJ
°,-.I

EXECUTIVE MANAGEMENT SYSTEM

r0

X

[.)

i¢_) _ m:

- _
c.) H
X

_D

O-H

I
I

__l_ ;_, _o __)

o0

ffl

I O
--4 _9 _n

o0 _n ¢_)

x o
o

i_ .I.-' 0

co

,-I
,-I

(D

In

,-I

0

0
Z
<

: H '_'_'_ X X X X

..

_0
0

"9

%
r_

,_t

0 U.l

0

4_

¢3

_Z
0

n_

X:

U_
r,_
X

CO

.,d
U_

3.5-73

:>I

i_ .I-'
,,< "U -,4
cO [::: .x::_
X O [-.-I

u

£/J

M

i

1
II
I

(n

,..n rn.,Q

E-, 4-' ,-1
m

XCOO3
COl

0
_., 4J X

[-_ _ 0,_

[_ OZ
¢.3

X
X
X

,_.l_- u]

c.b

×_
cj _

.,_
X
X

_.
X co
X
_-'_0 0

X 0 _
0
u

u) X _

ZZ E

C) 4-_

(/b _-# •
.,-¢ 4

X

m

H

EXECUTIVE MODULES

[_ Ca ,-4

X
:>

X_
rn x O

:z: ,q

O
c..) .w

r.n P" O

r_
O;

,y,

(._

r.D ,-I £,.-,

x,_
m_l

=.

X

I _0,-I .,4

•

o°

_ m

_ O'v)

' _._ X
'_ _X

'_'_X
_" XX

&

•-I e_v

o ._

o _=
Z

.,-I

tO

.c:

.,4
4.-,
::::D

,-¢

[..,
(D

£9

n_

m
r_
X

,W
.,-4

,,m

[/)

O
q-,

:>,
4a
.,..(
4-'

q)

O

"O
Q;

:::I
,-4
O

.,-4

rn
•,-I •

CO •

X

® 0
,--t °_

0

m
,C
c,)

O

Q)

.I-.

<
O
X

Q_

n

3.5-74

EXECUTIVE MANAGEMENT SYSTEM

o

4 o_
×_

m

0

E

coq._

rv @ r_

U3

8_._

4_
X

X •
_9

ffl 'I:_

U30 _

X

pC _ ,.a

(D

.C_ 0
_ rd m

×-;_

,--t

%

_ 'x:J O

× ._ _
i

L

d

_ _.,_ _,_

o

G)

U? t._ O

X _C_

X

X
X

[-_-_

X

× •

t9

4J

X

× ®

.6
,-.-I
,---t

O

O
,-t

"O
0

r_9
o'%

×
X

&&

gx
_ ×

&
Z

_ I.--I

H X

X

.&
__9 I>
•,_- _.

l:z_x

¢.O r_)
_ X

m

r.)

O

"r"

X
X

<

X

_q

.....;_ _'_
3.5-75

EXECUTIVE MODULES

C

n 03 _3
o3o0 _ _

O

ED

×o_

_3

×o_

_3

_Z

×_

ffl

×_

_l,-r

×_

X O0

×_

¢/1 ¢'_

×p.

gl

×_

X
X

_ 0

¢) 1:_
O9

_O _

_ • N O
×O3 X _

tO
_0

E90 [-_ O3
X O_O

_9

× 0_-_

X O_

I
m

o"_ _ 0 0
(_) _ c_) .--_
X _]

O_

_ O_ _ 0 0

n_

CO O..Q 0
CD 0 _'_

I •
i

I-×o

I

X OlD

X O_C.)

_X

gl
r._

_[.-,

-- (._ o r-_ <D

x

0

0
0

o')

0
0

,-I

0

0

<

X

_XX

CO '_-" C3 X

_-'X×

4a

¢.2

o

rO

.,-t

o
×

_o
.,-I
t,.

3.5-76

EXECUTIVE MANAGEMENT SYSTEM

_DJ

.

°.-I

C_C

0

_:; .,-t ¢0

0[_._

,£,..,
[._

t_

0

o
Z
<

L_
DQ
X

-
_X

_X

0,_

4_

.12

.C:
0

r_
I1)

.,.-I
"r

0
X

t_
.,.4
L_

3.5-77

EXECUTIVEMODULES

D
C_ o
_ 0 0.,

0

C_

,-4
,-i

C.)

,-4

0
m:

o_
o
z

:>

>4

x

x

Q;

0

,Xl Ul

. d

.12

1.4

"r"

X

h0
.,-4

3.5-78

EXECUTIVE MANAGEMENT SYSTEM

co£-_

Ngg___
X O_

_X
5a

X f_Z

X ._ E-_
_J _Z

4_

b_

U

.,q

X
_J
X

c_

O_IQIN_L" _Ao_,

3.5-?cJ

r._
03

Z
X

_; ×
,-4
_ d

m X
• X
,.-.t

0

0 _

EXECUTIVE MODULES

u_
0

0

L_

0

°_

_Jo

Z • ,-4

X .._ 0

®

_J
,-t

_3
0
X

0

_X

J

X
X

X

.-I-"

x

.q

3.5-80

EXECUTIVE MANAGEMENT SYSTEM

(a
(a o,I

H
X OI_

,-3 _0 ,--_'_z_
0"3 _ 0J ,-I

_.S
X _ _.11_

0 _ CO

8oEo_
×_

r-I VI

_ 0 IH

_ _.,_ _

o _0_

_8o"
_g

_ ,-4

O_
[3

_9
<

°° X

Ic_Z

,-.t

0 _

<

r.)

o

°,-.I

,..-t

t_
.,4

3.5-81

EXECUTIVE MODULES

_9

O<:co

.,-4 _)

CO

0
_ -,4

_ .,4

×_

i-_ "_

0
X

E

0
X

cn

c)
c.2 .__

u

___I

I
H

I Z ",4

°,4

I--t

I

I:::1 "lJ

X .,4

X 0
,-I

cn

(.n

m

X .,_
,-4

>

E

X .,4

,-4
,--4

cn (.9
E

0 [-_ r.--_
I._ v

_ d
_ m

.&

0

4-'

.c:
r.3

,x::
(J

.,4
:z:

,-_
X

o4
,-I

.,4

3.5-82

EXECUTIVE MANAGEMENT SYSTEM

X _._ 0

DJ

K_a
(.)

X

J
Z

ca
X

0 H

0
Z

.C
[9

_z
o
;4
m

@
.,-4
.-r"

X

(iD

-.-4

_)/
,:-_"i_.?.[>!i;.
q.-':< , "-G/,

3.5-83

H_._ 0
X C _-

°_

_J

E_

_J

U
0

X 0 1:14

- _
X P., I_

ul

°,..t

×_

I °

EXECUTIVE MODULES

_9

,-4

C_

4_

i u%

, _'
In

'_

3.5-84

,.-I

r,...}

,-4

0 {.o

P.., X

0

4-'

U

-,-I
"-r

Z

X

,el

N)
°,-t

EXECUTIVE MANAGEMENT SYSTEM

_0

0
%

2 °

X

×_ _

L
-- _ O O

• f_ o
_0 0 0

:Z) H

:2:(_9

.G
0

,-4

O

=

O

n_

z "_ X

g.

_J
,x::

o

o

w

X

.,.4
U.

3.5-85

, EXECUTIVE MODULES

G9 o9

×o_
n.<

•< • ,-4

oo _

•_ o_

-- _ _o=°

<_
O0 •

U
•_ 0

go

O0

O D
E-_ ,-4
o9 E-_ _
ogcn>

-- C3
x E-_

c_g

o9
D

_n
<
×

,--t

X
X

.,-t

<

X

_o
..-4

_3.5-86

EXECUTIVE MANAGEMENT SYSTEM

•,-4DJ

I

,._

f_ 0
[._ ,._ _

_a

< th _,l
O3 _9 ,-4
b-]'_ 11)

X O3 _-]

o3
O3 U_
CJ

,,-I0

X fm,_D._

•_ I_ _--I

+a._4

H> r_

._._
o

_ o o3

I:io')

4¢

_z_O3

X

i O3

E

,-I
_J O3

r..9

X _D

X

X

cD

_J

0

O3

,,...t

4_

r_

[-,

_z

.r-t

3.5-87

o3
Lo (D

o3

0-_

t-, _ r,.p

__ _ _ _

Xn._

_ 0 •

nJ

Icu

_ 0 ,--I

EXECUTIVE MODULES

E

w
Z L0 _

P_ O_
0

I--4

Z ,la

•,4 _,-

D,-

X

X

4a
cc_ X

[--,

X
(.g

_ oo3
' 0

X

6-,0 _

X_ _
,

-, O

_-'_X
_xX

_xX

®

°r;
,--t

0

4_

RJ

.4
-c

_n
_Q
t)

X

OD

-,4

3.5-88

EXECUTIVE MANAGEMENT SYSTEM

x

x L)

>, ,, n_ -<
[J] q_ .b, ,o I....
r-, r, [-_ r!.Jl

7< ,._ oo "-o

(4. _-_

4

t

f_., _._
_o

X 1

ul

--] x
L

H

[-'_ H u

X

X

c_9_

X

oOr.D

X _J

X_

X

DJ

_co

X L)

facto

X :b

<

cn _-l o0

X

5J
co t9 u]

X

o%_u]
[-_00

X_

X_

X •

I _n 50
o3 u] u%

X o9

I
I
I.

J

Z
X
X

0 X
X

o
,--I

0
Z

X_ O

ca_

X o_
u_

.M

m

CD

O

U3
[-,

X

3:5-89

EXECUTIVE MODULES

_q

cB

x ,-4 >_

_Q

#

_E'_O O

if/

,--t

X °,.-t _

×_

l

< <

_-,-I •

X_,-_

:>

H ¢0 _
r.D +J CD

"O

co 4_ cD

r_

n_

%o 4_ CO

'7

: O

X

<

co

r0
>

n_

__ co

>

tO

0
[-, _E:
X

X '-'
z
H

Z

< X m

xm

ka

£.-,

_'_X

,-q £.9[.-,

®

0 -p-,

4J

U

r_

.,-'t
.-r

X

tm
.,-4

3.5-90

EXECUTIVE MANAGEMENT SYSTEM

n

X O_

_D
.la

Z
cg'_Z
.

X >

X

x i_

_ _ .--1
X

_ >.,0

0
o

×_

C_

Z 0

C

H =)

_2
H

Y_=g

_J

c_)

o
f_

Z

X

c'q

D_

3.5-91

EXECUTIVE MODULES

50

D

0

0

Z

¢j

X

_2
Z
H

X

(b
E-,

X

&
1-t
X

X

.1-'

Itl

_a
Z
D
X

o4

bO

S. 5-92

EXECUTIVE MANAGEMENT SYSTEM

C9

f._ 4J [8
X _0 _

G

.-4
n_

,-4

"O
0
m:

o
z

u/

H

X

="
C3
-

X

X
D-1
X

,-3

4J

{._1

0

(_9
u3

X
X

cN

b o

o_ _ Q__
O_ _00_ '

3.5-93

EXECUTIVE MODULES

,-4

5o _ ¢o

X 0 _-_
Z

_Z
£9

.c

X
X

I11

.,-I
r..

X
X

,-4 Z

C.b
X

,-4
m

0 X

3.5-94

3.6 ANOPP DATA BASE MANAGEMENT

3.6.1 Overview

EXECUTIVE MODULES

The ANOPP Data Base Manager (DBM) provides ANOPP executive and functional modules

with a machine independent method of storing and retrieving data on sequential and direct

access storage devices. The following features are provided:

i. Creation of new data units on direct access storage devices.

2. Accessing of existing data units on direct access storage devices.

3. Multi-data unit sequential library files for offline storage and retrieval

of data units.

4. Direct and sequential access of data members.

5. Fixed format, variable format, and unformatted record types.

6. Full record, partial record, and sequential element within record reading

and writing of data members.

The ANOPP DBM provides a hierarchial data structure having direct (based on the

relative record position) and sequential accessing of logical records. These data re-

lationships are visualized in Figure i.

The highest level of the hierarchy is termed the "data base", which is defined as the

universe of data for a particular ANOPP run. The universe is composed of named "data

units" and encompasses all units referenced, even though units may be loaded, attached,

created, and detached at various times during an ANOPP run.

The "data unit" is the next level of the hierarchy. It is the highest level that may

be directly referenced through ANOPP DBM control statements and subroutine calls. A Data

Unit is physically stored on direct access storage devices and is comprised of one or more

named "data members". A data unit name must be unique within a particular segment of an

ANOPP run.

Each "data member" is uniquely named within a data unit and is comprised of a set of

logically related and organized records. Each member contains a format specification

which defines the type and structure of the records.

3.6-1

lXl

p,
<1:

EXECUTIVE MODULES

< >< >< > o >_

< < < b-_

E-_

<;

<
C_
[

H
Z
D=

<
A

J F"

• h-4

-- <
<-
E'_

•,_ .M

5') In

0 0
•,4 ..,-I

,-4 ,-i

Z
(.,,..] 4-I ,-I

(._ 0 0
_.] .,-I ,,4

i _

t
0 _I 0

_- I L____ _I _ _

_ _ _ i_ i_ i \

r.)

o3

,c
O

m

_J
.,4

C_

,,4

3.6-2

, ANOPP DATA BASE MANAGEMENT

Four record Types are supported by the ANOPP DBM; fixed format, fixed format header

with a variable number of fixed format Trailers, card image, and unformatted records.

Depending on the type, records are comprised of one or more contiguous words or

elements. On formatted members the format specification defines the type and length of

individual elements (integer, real double precision, complex, character string, etc.) and

thus the length in words of records. Unformatted members have variable length records

whose lengths are defined as they are written.

3.6.2 DBM Control Statements

Several ANOPP DBM Control Statements have been defined to enable the ANOPP user to

define a data base to the ANOPF Data Base Manager and to communicate the file names used

by the external system to the DBM. In brief, the following control statements are fea-

tured:

L_AD

UNL@AD

ATTACH

DETACH

CREATE

ARCHIVE

PURGE

OR_P

TABLE

- load data units from a sequential library;

- unload data units to a sequential library;

attach a data unit from the external system;

- detach a data unit from The internal system;

- create a new data unit;

- permanently write-protect a data unit;

- detach a data unit internally and drop it from the external

system

- release an external file name from the external system;

- build a table, To be accessed using Table Manager, on a data

member.

A detailed description of each control statement is provided in Section 3.5.2.

3.6.3 Member .Manager

3.6.3.1 General Description

The member manager as part of the ANOPP data management system provides basic open/

rAG,
PO0. - I8 3.6-3

EXECUTIVE MODULES

close, read/write, and position functions for module writers via calls to specific member

manager routines. These routines are:

OPEN

MM_PWD

MM_PWS

MM_PRD

PUT

MMPUTR

MMPUTW

MMPUTE

GET

MMGETR

MMGETW

MMGETE

CLOSE

MMCL_S

POSITION

open member to write directly

open member to write via scratch

open member to read

write a record

write a partial record on n words

write a partial record of n elements

read a record

read a partial record of n words

read a partial record of n elements

close a member

MMSKIP skip n records

MMREW rewind member

MMP@SN position member to record n

Data members are made accessible through calls to the member manager "open" routines.

These routines establish and maintain the control structures required for maintaining

multiple members on a single unit. The following access modes are provided:

I. Open for reading which allows for random and sequential retrieval of full

and partial records;

2. Open for direct w_iting which enables direct storage of records to a data

•member on a unlt; and

3. Open for scratch wmiting which provides storage of records to a data member

on a scratch unit until the member is closed.

The number of membems which may be concu_'rently open is limited by the amount of

available Global Dynamic Storage and _:he number of allocated Data Unit Director_y (DUD)

entries. Each data unit which has one or more members open requires dynamic storage for

a file table and buffer through which it interfaces with the computer operating system.

Each open member also requires an Active Me_er Directory entry and a Member Control Block

which are also in dynamic core. Additionally, each member opened for indirect (scratch)

write uses a DUD entry with associated file table and buffer.

3.6-_

ANOPP DATA BASE MANAGEMENT

Three Member Manager PUT subprograms are provided which enable the user to write full

and partial records to a data menlber that is open for direct or indirect write. Calls to

these subprograms may be intermingled as required with only three limitations:

i.

2.

3.

MMPUTE may not be used with unformatted members.

MMPUTW calls which precede MMPUTE calls must write the number of words

required for MMPUTE to begin writing at the beginning of the next element.

MMPUTE and MMPUTW calls which immediately precede MMPUTR calls must end

the record which they were writing.

A member on a unit can be simultaneously open to read and write. The old versio_ is

available for reading until the new version is completed and closed at which time all MM

internal links to the old version are destroyed. The new version being written (in

"scratch" or "direct" mode) does not physically replace the old version but instead is

written at a different location on the unit. Therefore, in reading and writing simultane-

ously, no synchronization of PUTs and GETs is required. Any record on the old version is

available for reading regardless of which record on the new version is being written.

Since the open to write call is non-destructive, the open to read call may occur before or

after the open to write call. The open to read call on this member (MM_PRD) should have a

corresponding close call (MMCL_S) before the new version of the member is closed. If it

does not, an informative message is issued. Furthermore, the NAME argument provided to

the open to read, subsequent gets, and coPrespondlng close calls must not have The same

core location (i.e., same variable name) as the NAME argument provided to the open to

write and subsequent puts and corresponding close calls.

Example (where UNIT1 (MEMI) is an existing member and not open currently):

DIMENSION NAMER(3), NAMEW(3)

NAMER(l) = 5HUNITI

NAMER(2) = 4HMEMI

NAMEW(1) = 5HUNITI

NAMEW(2) = 4HMEMI

CALL MM_PRD (NAMER)

CALL MM_PWD (NAMEW, other arguments)

CALL MMPUTR (NAMEW, other arguments)

CALL MMGETR (NAMER, other arguments)

CALL MMCL@S (NAMER)

CALL MMCL@S (NAMEW)

:3.6-5

EXECUTIVE MODULES

Three Member Manager Position subprograms are available which provide rewind, forward

and reverse skip, and random record positioning. Usage of these routines requires that a

member be open for read.

The close member module (MMCL_S) should be called for all open members prior to

returning to ANOPP Executive control. If an executive module fails to close a member, the

error will not be detected, subsequent use of that member will be inhibited, and unpre-

dictable errors in subsequent executive and functional modules may occur. If a functional

module fails to close a member, subprogram XFMMM will logically close it and issue an

informative message. However, members which were open to write (and not closed) will not

be entered or updated in the Data Member Directory for the particular data unit on which

they were written. Thus, members which did not exist prior to being opened will be

eliminated from the ANOPP universe of data and updated members will be restored to their

pre-update condition.

3.6.3.2 Subroutine Arguments

Several subroutine arguments are common to more than one member manager subroutine.

NAME - a three word array, the first 2 words specifying the unit and member

names respectively. Each name is 1-8 alphanumeric characters beginning

with an alphabetic character. The third word is reserved for the MM and

must not be altered by the user.

FORMAT - specifies the format of the records which will be created. It is

given as

elements

a chsmacter string terminated with a $. The acceptable codes for

which comprise the record include:

I: integer (one word)

RS: real single precision (floating point-one word)

RD: real double precision (floating point-two words)

CS: complex single precision (floating point-two words)

L: logical (one word)

CD: complex double precision (floating point-four words)

At: character string of i characters which is assumed to be packed

8 characters per word, l_i__iS2.

$: format string terminator character.

3.6-6

ANOPP DATA BASE MANAGEMENT

Each element code is separated by a comma. A multiplier may optionally

precede parentheses enclosing a single element or a group of elements. The

multiplier specifies the number of times the element(s) are to be repeated.

The character * may be used as an indefinite multiplier when preceding the

last element(s) of the format. The _ specifies an indefinite repeat of the

element group. There are four types of formats:

UNF@RMATTED - the records are undefined format and variable length.

A zero is coded for FORMAT.

FIXED LENGTH FORMAT - The format does not contain the indefinite

multiplier (e). Each record will be of the same length deter-

mined by the format.

VARIABLE LENGTH FORMAT - The format includes the indefinite multipiie_

(*). The records are variable length depending on the number of

elements written which may or may not include the indefinite

repeat group. However, pamtial repeat groups may not be written.

CARD IMAGE FORMAT - The format consists of "CI" and will be interpreted

as "IOAS_". It is, therefore, a special purpose fixed format

member.

For example:

FORNAT = 6HI0 I $

specifies f_xed length formatted records of i0 words (i0 integer

elements).

FORMAT = 19HI,2 AI0, 2 (I,RS) $

specifies a fixed length formatted record of 9 words (7 elements)

as follows: inteEer, iO characters (2 words), I0 characters (2

words), integer, real single precision, integer, real single pre-

cision.

FORMAT = 15H2(I), _(I,CS) $

specifies a variable length formatted record of two integers followed

by repeating group of 2 elements (3 words) of integer and complex

single precision. The number of elements on a record may be 2, 4,

6, 8, etc., depending on the number of repeat groups actually written.

FORMAT = 0

then the records will be variable length with undefined format.

FORMAT = 2HCI

then the records are fixed format card images.

3.6-7

EXECUTIVE MODULES

MNR - specifies the maximum number of records to be output to a data member.

If MNR is zero a default value of i0,000 records is used. The MNR argument

is used by Data Member Manager in computing the size of Record Directory

blocks which are used as indices in subsequent random and sequential record

retrieval. An attempt to write more than MNR data records to a particular

member will result in immediate termination of the ANOPP run.

STATUS - conditions, which are of interest to a user of Member Manager, are

returned in this argument by open, get, and positioning subroutines. If

STATUS is:

0 conditions are normal for the operation involved,

-i Member Manager is currently positioned in the midst of a mecord

or the just executed MMGETR transferred a partial record,

-2 End of record occurred on a partial get,

-3 End of member was detected on the last get or position operation,

-4 Beginning of member was detected on the last position operation,

-5 The data unit specified in the last open member request does not

exist, and

-6 The data member specified in the last open member request does

not exist.

3.6.3.3 Open Data Member Subroutines

3.6.3.3.1 MM_PRD - Open for Read

Purpose: MM@PRD makes an existing data member available for subsequent random and

sequential accessing of data.

Format: CALL MM_PRD (NAME, IHDR, STATUS)

Arguments:

NAME - a three word array containing the names of the data unit and member to

be opened. Upon returning, the names are unchanged and the third word

contains the integer IDX to the Member Control Block.

IHDR - a two word array which on return contains, in the first wdrd, the length

of the largest data record and, in the second word, the number of data

records written on the data member.

3.6-8

ANOPP DATA BASE MANAGEMENT

STATUS - an integer less than or equal to zero is returned. If zero is returned,

the data member was opened. A negative status indicates that the data

member is not open.

Description: The initial steps in opening a data unit are validation of the name

argument and determining if the data member is in use via Data Table Manager. The name

validation routine (MMVNM) fetches alternate names for both data unit and member, edits

them for proper form (i to 8 character alphanumeric with leading alphabetic character),

and attempts to locate the named data unit in the Data Unit Directory (DUD). If a DUD

entry is not found, a status of -5 is set and the open routine returns to its caller. If

a DUD entry is found, a routine (MMVTD) is called to determine if the data member is also

open to Data Table Manager (DTM). If it is, ANOPP execution is terminated immediately

with an appropriate message.

If the data member is not open to DTM, subprogram MMI_MC is then called to increment

the DUD entry's open member count and insure that the data unit is open. The data unit's

Data Member Directory (DMD) is then read into core and searched for the named data member.

If an entry for the data member is not found a -6 status is set, the open member count is

decremented and if it is zero the data unit is closed and MM_PRD returns to its caller.

When an entry is found, however, an Active Member Directory entry and a Member Control

Block are established for the data member; the maximum record length and number of user

records are retrieved from the data member's Data Member Header; and a status of zero is

returned to the user.

Error Conditions: MM@PRD prints an informative message and returns a non-zero

status to the caller if either the unit named in the open request is not in the unit

directory or the member named is not in the member directory.

MM@PRD aborts with a message if the member is already open to read, if the member is

an active data table, or if an attempt to expand the member control block _s unsuccessful.

8.6-9

EXECUTIVEMODULES

3.6.3.3.2 MM@PWD- Openfor Direct Write

Purpose: MM@PWDmakesa datamemberavailable for subsequentsequentialoutput

directly to its data unit.

Format: CALLMM_PWD(NAME,F@RMAT,MNR,STATUS)

Arguments:

NAME - a three word array containing the names of the data unit and member to

be opened. Upon returning, the names are unchanged and the th_-,d w::-c

contains the integer IDX to the Member Control Block.

F_RMAT - a Hollerith literal specifying the number and types of data elements

in each data record. Legal values are discussed in Subsection 3.6.3.2.

MNR - an integer number, greater than or equal to zero, which specifies the

maximum number of data records that may be written to the data member.

STATUS - a negative or zero integer is returned indicating, if zero, that the data

member is open, or, if negative, not open.

Description: The initial steps in opening a data member for direct output are

validating the name argument and determining if the data member is in use via Data Table

Manager. The name validation routine (MMVNM) fetches alternate names for both data unit

and member, edits them for proper form (i to 8 character alphanumeric with leading alpha-

betic character), and attempts to locate the named data unit in the Data Unit Directory

(DUD). If a DUD entry is not found, a status of -5 is set and the open routine returns to

its caller. If a DUD entry is found, a routine (MMVTD) is called to determine if the data

member is also open to Data Table Manager (DTM). If it is, ANOPP execution is terminated

immediately with an appropriate message. If the data member is not open to DTM, the data

unit's direct write flag is checked to determine if another data member is open for direct

writing on the data unit. If the direct write flag is set, ANOPP execution is terminated

with an appropriate message. Otherwise, an entry is made in the Active Member Directory,

the data unit's direct wmite flag is set, a Member Control Block is built containing the

3.6-10

ANOPP DATA BASE MANAGEMENT

Data Member Header, and the open member count in the data unit's DUD entry is incremented

(via MMI_MC) thus insuring that the data unit is open.

Error Conditions: MM_PWD prints an informative message and returns a non-zero

status to the caller if the unit named in the open request is not in the unit directory.

MM@PWD aborts with a message if the data unit has been archived or is already open

for direct wl_ite.

3.6.3.3.3 MM_PWS - Open for Indirect Write

Furpose: MM@PWS makes a data member available for sequential output to a scratch

data unit. When closed, the data member is copied to the data unit named in the open.

Format: CALL MM@PW[(NAME, F_P_AT, MNR, STATUS)

Arguments:

NAME a three word array containing the names of the data unit and member to

be opened. Upon returning, the names are unchanged and the third word

contains the integer IDX to the Member Control Block.

F@RMAT - a Hollerith literal specifying the number and types of data elements in

each data record. Legal values are discussed in Subsection 3.6.3.2.

MNR - an integez number, greater than or equal to zero, which specifies the

maximum number of data records that may be writ.ten to the data member.

STATUS - a negative or zero integer is returned indicating, if zero, that the data

member is open or_ if negative, not open.

Description: The initial steps in opening a data unit are validating the name argu-

ment and determining if the data member is in use via Data Table Manager. The name valia_

tion routine (MMVNM) fetches alternate names for both data unit and member, edits them fur

proper form (i to 8 alphanumeric with leading alphabetic character), and attempts to

locate the named data unit in the Data Unit Directory (DUD). If a DUD entry is not found,

a status of -5 is set and the open routine returns to its caller. If a DUD entry is

3.6-11

EXECUTIVE MODULES

found, a routine (MMVTD) is called to determine if the data member is also open to Data

Table Manager. If it is, ANOPP execution is terminated immediately with an appropriate

message. If the data member is not open to DTM, a scratch data unit is created, an Active

Member Directory entry is built, a Member Control Block is built containing the Data

Member Header, and the open member count is incremented to open both the actual and scratch

data units.

Error Conditions: MM_PWS prints an informative message and returns a non-zero status

to the caller if the unit named in the open request is not in the unit directory.

MM_PWS aborts with a message if the data unit is archived.

3.6.3.4 Put Subroutines

3.6.3.4.1 MMPUTR - Put Record

Purpose: MMPUTR writes a complete record to a named data unit.

Format: CALL MMPU'R (NAME, ARRAY, NWDS)

Arguments:

NAME - a three word array which specifies a data member, opened to write, on which

the record is to be written.

ARRAY - an array containing the record to be written to the data member.

NWDS - length, greater than or equal to zero, of the record to be written.

Descri2tion: There are three initial validations performed by subprogram MMPUTR.

First, a call to subprogram MMEDNM insures that the NAME argument used in calling MMPUTR

is the same as that used to open the member and that the member is open for write. Se-

cond, the Member Control Block (MCB) is checked to determine if the previous record was

completed. If is was not, ANOPP execution is terminated and a message spec@fying the

cause is output. Third, if the previous record was completed, the NWDS argument must be

zero or positive. If NWDS is negative, ANOPP execution is terminated.

3.6-12

ANOPP DATA BASE MANAGEMENT

The next level of validation is dependent on the data member's format type. For

unformatted members, no further validation is performed. For fixed format, the NWDS

argument must equal the fixed record length from the MCB. And for variable format re-

cords, NWDS must be equal to the length of the fixed part of the record plus an integral

(or zero) number of fixed length trailers.

Records are put to the member using subprogram MMPUT which builds the Record Di-

rectory and maintains the control information in the MCB.

Error Conditions: MMPUTR aborts with a message if the NAME argument is invalid, if

the previous record is incomplete, if the NWDS argument is negative, or if the record to

be written does not end on a legitimate record format boundary.

3.6.3.4.2 MMPUTW - Put Partial Record Words

_: MMPUTW writes a partial record of a specified number of words to a fixed

format, variable format, or unformatted data member.

Format: CALL MMPUTW (NANE, ARRAY, NWDS, E_R)

AF_uments:

NAME a three word array which specifies a data member, opened to write, on

which the partial record is to be written.

ARRAY - an array containing partial record to be _rritten.

NWDS number of words, greater than or equal to zero, to be written from ARRAY.

E_R logical end-of-record flag -- .TRUE. terminates the record and .FALSE.

record is to be left open for additional partial puts.

Description: MMPUTW performs two initial validations. First, subprogram MMEDNM

insures that the NAME argument is valid for the put operation. Then the NWDS argument

must not be negative. If either of these validations fails, ANOPP is terminated and a

message describing the error is output.

Final validation of a record length is performed when the E_R argument is true and

the data member is formatted. If the data member is fixed format the total record length

,. "_., 3.6-13

EXECUTIVE MODULES

must equal the record length implied by the format. If variable format, the total record

length must equal the length of the fixed part of the record plus the length of an integral

(or zero) number of fixed length trailers.

Finally, subprogram MMPUT writes the partial record to the member, updates the con-

trol information in the MCB, and, when EZR is true, updates the Record Directory.

Error Conditions: MMPUTW aborts with a message if the NAME argument is invalid, if

the record length is incompatible with the format, or if the number of words argument is

negative.

3.6.3.4.3 MMPUTE - Put Partial Record Elements

Purpose: MMPUTE writes a partial record of a specified number of elements to a

formatted data member.

Format: CALL MMPUTE (NAME, ARRAY, NEL, E_R)

Arguments:

NAME - a three word array which specifies a data memher, opened to write, on

which the elements are to be written.

ARRAY - an array containing the partial record to be written.

NEL number of elements, greater than or equal to zero, in ARRAY.

E_R - logical end-of-record flag. .TRUE. terminates the record; .FALSE.

record is to be left open for additional partial put requests.

Description: MMPUTE validates the NAME argument using subprogram MMEDNM to insure

that the data member is open to write. It then checks the format type since elements may

not be put to an unformatted member.

Next the NEL argument is checked to insure that it is not negative; the Format

Specification Table (FST) index in the Member Control Block (MCB) is set by MMSFEI based

on the number of words already put to the curment record (also in the MCB); and the number

of words required to put NEL elements to the data member is determined using MMGNWE. If

3.6-14

ANOPP DATA BASE MANAGEMENT

the end-of-record flag (E@R) is true, the total record length, including NEL elements, is

checked against the format and if it is not valid, a message is issued and ANOPP is

te_ninated. Finally, if all validations are passed, NEL elements are written to the

member via subprogram MMPUT.

Error Conditions: MMPUTE aborts with a message if the NAME argument is invalid, if

the record type is unformatted (improper use of this call), if the number of elements in

the array containing the partial record to be written is negative, if the record length is

incompatible with the format, or if the total record length exceeds the fixed format.

3.6.3.5 Get Subroutines

3.6.3.5.1 MMGETR - Get Record

_: MMGETR attempts to read a complete record from a named data member.

Format: CALL MMGETR (NAME, ARRAY, MAXWDS, NWDS, STATUS)

Arguments:

NAME - a three word array which specifies a data member, opened for read, from

which the record is to be read.

ARRAY -

_IAXWDS -

NWDS -

STATUS -

an array into which the data record is to be read.

max_num number of words which may be read into ARRAY (i.e., the assumed

length of ARRAY) must be greater than zero.

returned by MMGETR, integer number of words actually read into ARRAY. NWDS

will be less than or equal to MAXWDS.

returned by MMGETR, integer status of the read operation:

0 - a complete record was read. NWDS is less than or equal to MAXWDS.

-i - the record in ARRAY was truncated due to lack of room, NWDS equals

MAXWDS (record length is g_eeater than MAXWDS) and member is positioned

to the beginning of the next record.

-3 - the end-of-member was detected, NWDS equals zero.

: 3.6-15

, EXECUTIVE MODULES

Description: MMGETR validates the NAME argument using subprogram MMEDNM to insure

that the data member is open for reading. The MAXWDS argument is checked to insure that

it is greater than zero. The Member Control Block (MCB) is then checked to determine if

the member is positioned within a record. If it is the member is repositioned to the

beginning of the next record. Subprogram MMGET is then called to read MAXWDS words into

ARRAY. MMGET returns a status of -i if the record length is greater than MAXWDS words, -2

if a full record was read, and -3 if the end of member was detected. MMGETR changes a -2

status to zero and returns the status to The user.

Error Conditions: MMGETR aborts with a message if the NAME argument is invalid or if

the maximum number of words which may be read into ARRAY is less than or equal to zero.

3.6.8.5.2 MMGETW - Get Partial Record - Words

Pu___ose: MMGETW reads a partial record of a specified number of computer words from

a data member.

Format: CALL MMGETW (NAME, ARRAY, NWR, NWDS, STATUS)

Arguments:

NAME - a three word array which specifies a data member, opened for read, from

which the partial record is to be read.

ARRAY - an array into which the partial record is to be read.

NWR - number of words to be read into ARRAY, must be greater than zero.

NWDS - number of words actually read into ARRAY, returned by MMGETW; NWDS will

be less than or equal to NWR.

STATUS - integer status of The read operation, returned b} MMGETW:

0 - a partial record of NWR words was read, NWDS equals NWR;

-2 - a partial record of NWDS words was read ending the record, NWDS

is less than or equal to NWR;

-3 - end-of-member was detected on the read, NWDS equals zero.

Description: MMGETW validates the NAME argument using subprogram MMEDNM to insure

thst the data member is open for reading. The NWR arguments is checked to insure that it

3.6-16

ANOPP DATA BASE MANAGEMENT

is greater than zero. NWR words are then read from the current position of the data

member by subprogram MMGET. MMGET returns a status of -i if NWR words were read, -2 if an

end-of-record was detected, and -3 for end-of-member. A status of -1 is changed to zero

prior to returning to the user.

Error Conditions: MMGETW aborts with a message if the NAME argument is invalid or if

the number of words to be read is less than or equal to zero.

3.6.3.5.3 MMGETE - Get Partial Record - Elements

Purpose: MMGETE reads a partial record of a specified number of elements from a

fo1_m_tted data member.

Format: CALL MMGETE (NAME, ARRAY, MAXWDS, NER, NEL, STATUS)

Arguments :

}lAME - a three word array which specifies a data member, opened for read, from

which the partial record is to be read.

ARRAY - an array into which the partial record is to be read.

MAXWDS - maximum number of words which may be read into ARRAY (i.e., the assumed

length of ARRAY) must be greater than zero.

NER - nLunber of elements to be read into ARRAY, must be greater than zero.

NEL - number of elements ae_ually read into array (returned by MMGETE), will be

greater than or equal to zero.

STATUS - integer status of the read operation, returned by MMGETE:

0 - a partial record of NER elements was read, NEL equals NER:

-i - a partial record of NEL elements was read, NEL is less than NER;

-2 - a partial record of NEL elements was read ending the record, NEL

is less than or equal to NER;

-3 - end-of-member was detected on the read, NEL is zero.

Description: MMGETE validates the NAME argument using subprogram MMEDNM to insure

that the data mender is open fo_ reading. The length of ARRAY (MAXWDS) and nun_ber of

elements to be read (NER) are then edited for greatel- than zero and the format type of the

member is checked to insure that it is formatted. If an error is found, ANOPP is termin-

ated with an appropriate message. The Format Specification Table (FST) index is then set

3.6-17 '

,ORIGINAL PAGE IS

_ POOR OUALIT_(

EXECUTIVE MODULES

by subprogram MMSFEI based on the number of words previously read from the current record.

Subprogram MMGNWE is then called to obtain the number (NEL) and combined length (NWDS) of

consecutive elements, up %o a maximum of NER elements, whose combined length does not

exceed MAXWDS words. NWDS words are then read from The member using subprogram MMGET.

MMGET returns the STATUS and number of words actually read (NWR). If NWR is less than

NWDS, the number of elements read (NEL) is obtained from subprogram MMGNEW. Then, if the

STATUS does not equal -2 and NEL equals NER, STATUS is set to zero.

Error Conditions: MMGETE aborts with a message if the NAME argument is invalid, the

length of the record array is not greater than zero, the number of elements to read is not

greater than zero, the data member is unformatted (misuse of this call), or if the get of

a formatted record does not end on an element boundary.

3.6.3.6 Position Subroutines

Data Member Manager provides the following capabilities for positloning within a data

member that is open for reading:

i. Position %o a Specified Record

2. Position to the beginning of the Current Record

3. Position %o the beginning of the Data Member

4. Position forward or backward a Specified Number of Records.

3.6.3.6.1 MMP@SN - Position to a Specified Record

Purpose: MMP@SN positions a data member to the beginning of a data record specified

by its numeric sequence on the member.

Format: CALL MMP_SN (NAME, NREC, STATUS)

Arguments:

NAME - a three word array specifying the data member, opened for read, which is

%o be positioned.

NREC - integer number specifying the record to which the data member is %o be

positioned.

3.6-18

ANOPP DATA BASE MANAGEMENT

STATUS -

0

-3

-4

integer status of the position operation:

- data member is positioned to the specified record;

- data member is at the end of the member;

- data member is at the beginning of the member.

Description: MMP_SN edits the NAME argument using subprogram MMEDNM to determine if

the data member is open to read. If it is not, ANOPP is terminated with an appropriate

message. The internal record position information in the Member Control Block (MDB) is

reset to the beginning of the record and the current record number (CRN) in the MCB is set

equal to the NREC argument. If NREC is greater than the number of records written to the

member_ the CRN in the MCB is set to number of records written plus one. If NREC is

nega[ive or equal to zero, then CRN is set to one.

Error Conditions: MMP_SN aborts with a message if the NAME argument is invalid.

3,6.3.6,2 MMREW - Rewind Data Member

Purpose:

the member.

Format:

Arguments:

NAME -

MMREW positions a data member to the beginning of the first data record on

CALL MMREW (NAME)

a three word array specifying the data member, opened for reading, which

is to be positioned.

_tion: MMREW edits the NAME argument using subprogram MMEDNM to determine if

the data member is open to read. If it is not ANOPP is terminated with an appropriate

message. The internal record position information is then set to the beginning of the

record and the current record number is set to one.

Error Conditions: MMREW aborts with a message if the NAME argument is invalid.

3.6.3.6.3 MMSKIP - Skip Records

Purpose: MMSKIP positions a data member forward or backward by a specified number of

records.

3.6-19

EXECUTIVE MODULES

Format: CALL MMSKIP (NAME, NREC, STATUS)

Arguments:

NAME - a three word array specifying the data member, opened for reading, which

is to be positioned.

NREC - integer number of records to be skipped:

if negative - skip backward NREC records;

if positive - skip forward NREC records;

if zero - position to the beginning of the current record.

STATUS - integer status of the position operation:

0 - data member is positioned to the specified record;

-3 - data member is at the end of the member;

-4 - data member is at the beginning of the member.

Description: MMSKIP edits the NAME argument using subprogram MMEDNM to insure that

the data member is open for reading. If it is not, ANOPP as terminated and an appropriate

message is issued. The internal record position information is set to the beginning of

the current record and NREC is added to the current record number in the Member _ntrol

Block (MCB). If the current record number is now negative, it is set to one and the

STATUS argument is set to -4. If the current record number is greater than the number of

records available on the member, it is set to the number of available records plus one and

the STATUS argument is set to -3. This provides an end-of-member condition on a sub-

sequent read.

Error Conditions: MMSKIP aborts with a message if the NAME argument is invalid.

3.6.3.7 MMCL_S - Close Data Member Subroutine

Purpose: MMCL_S closes a previously open data member making it unavailable for

subsequent access.

Format: CALL MMCL_S (NAME)

ArGuments:

NAME - the three word array identifying the data unit and member that was used in

opening the data member.

3.6-20

ANOPP DATA BASE MANAGEMENT

Description: MMCL_S edits the NAME argument using subprogram MMEDNM. If the data

member is not open, processing is terminated. If the member was open for reading, it is

logically closed using subprogram MMCLSE. If it was open for direct write the Data Member

Directory (DMD) is updated, the Data Member Header (DMH) is written to the data unit, the

direct write flags in the Data Unit Directory (DUD) and Active Member Directory (AMD)

entries are cleared, and the member is logically closed using MMCLSE. In all cases, when

MMCLSE is called the open member count is decremented and when the open member count

equals zero the unit is logically closed.

The closing of a data member that is open for indirect write is a little more com-

plex. First, the data unit may not have another data membem open for direct write or

ANOPP will be terminated. Second, the DMD and DMH must be updated and written on the

scratch data unit that was created when the data member was opened. Third, the data

member on the scratch unit is opened for read so it can be copied, using Data Member

Manager, to the actual named data unit. The open member count on the scratch unit is set

to i and the direct write flag is cleared. Fourth, a record buffer is requested in Global

Dynamic core to be used in copying the member. Fifth, the Member Control Block created

when the member was opened to write is modified to permit output directly to the data unit

named in the open call. Sixth, the member is copied from the scratch unit to the actual

unit, and the scratch unit is closed and discarded. Finally, the DMD and DMH are updated

and written to the actual data unit, zhe member is logically closed via MMCLSE, and the

dynamic core used in the copy operation is freed.

Error Condition: MMCL_S aborts with a message if the NAME argument is invalid, if

close write requested and member also open to read, if member was open to write direct and

another member is open to write direct on the same data unit, or if insufficient Global

Dynamic Storage is available for MMCL@S scratch copy.

3.6-21

EXECUTIVE MODULES

3.6.3.8 Auxiliary Modules

An auxiliary module performs a function common to several member manager modules and

is available for use by these modules.

3.6.3.8.1 MMERR - Member Manager Error Message Writer

Subroutine MMERR (NUM, NAMI, NAM2) processes fatal and non-fatal errors for the

member manager modules and the DBM control statements ARCHIVE (XAR), ATTACH (XAT), CREATE

(XCT), DETACH (XDT), and PURGE (XPU). NUM, the integer number of the error message to be

printed_ is negative if the error is fatal and positive if the error is non-fatal. TMERR

prints the informative error message (indicated by the absolute value of NUM) with specific

values involved in the error condition (indicated by input values NAMI and NAM2). If the

error is fatal, ANOPP is aborted by a call to XEXIT. If the error is non-fatal, a trace-

back is performed to the major DBM module called by the user.

3.6.3.8.2 MMVUM - Validate Data Unit and Member

Purpose: MMVUM determines if a data unit and member are available in the present

ANOPP operating environment.

Format: I = MMVUM (NAME)

A__r_uments:

NAME - a two word array containing the name of the data member and name of the

unit on which it resides.

MMVUM returns the following integer values:

-1 - data unit does not exist;

0 - both data unit and me_er exist;

1 - data member does not exist.

Description: MMVUM pemforms the same types of validations as subprogram MM¢PRD;

however, no infor_native messages are issued. The fozln of the data unit and member names

is validated using subprogram XVNAME to insure that they ape proper alphanumeric names.

If either name is malformed an appropriate message is issued and ANOPP is terminated.

3.6-22

ANOPP DATA BASE MANAGEMENT

Alternate names for both data unit and member are fetched and the Data Unit Directory

is searched for the named unit. If it is not found, a function value of -i is returned to

the caller. If the data unit is found, its Data Member Directory is read into core and

searched for the named data member. If it is found, a function value of zero is returned.

Otherwise, the function's value will be i.

3.6.3.8.3 L_AD Control Statement Error Message Writer - XLDERR

Subroutine XLDERR(NUM, NAME, IVAL, IRAY, L) processes non-fatal errors for the DBM

control statement L_AD.

3.6.3.8.4 UNL@AD Control Statement Error Message Writer - XUNERR

Subroutine XUNERR(NUM, NAME, IVAL, IRAY, L) processes non-fatal errors for the DBM

control statement UNLOAD.

3.6.3.9 Hierarchy Charts

A hierarchy chart is a graphical representation of the logical relationship between

modules. Figures 1-23 are the hierarchy charts for the member manager modules and the

auxiliary modules.

In general, only member manager modules appear as a block entity in the charts and

all member manager modules appear at least once. The charts are in alphabetical order

with respect to module name except for Figure i, which represents the logical grouping of

the member manager modules. A hierarchy for the auxiliary modules are also among the

alphabetical charts.

A module which is not part of member manager but is called by a membeP manager

module is not show_ as a block entity but is listed at the bottom of the chart. The

module may be an ANOPP executive module which is part of the Executive Management System,

the Dynamic Storage Management System, or the General Utilities. It may also be a sub-

program provided by one of the CDC operating system libraries. In eithe_ case, the module

is generally of a service or utility nature and may be called many times by various member

)_ _¢r%I_A _I 3.6-23

'_"'!' _I,A;JTV

EXECUTIVE MODULES

manager modules. One of these service type modules may be of sufficient design purpose to

the calling MM module that it should receive more emphasis than simply being listed. In

these cases, the non-MM module is represented as a block entity for logical emphasis and

is noted as such on the chart.

Symbols and headings used in the hierarchy charts are given below:

NAME

purpose

NAME - module name

purpose - brief description

r]
1 f
I NAME I
f l
i i
i]

Represents logical module not existing as

entity. It is used for logical groupings.

indicates lower module is called by the
higher module.

implies logical grouping with no direct

relationship

in upper right corner of module block in-

dicates module is expanded as a separate
entity.

ANOPP Modules Called:

CDC System Library Subprograms Called:

a list of DBM, DSM, and General Utility

modules called by the modules in this figure.

a list of subprograms called by the modules

in this figure and which are not part of

ANOPP but are provided by CDC NOS operating
system libraries.

3.6-24

ANOPP DATA BASE MANAGEMENT

_M
co

ua,_

r

I -'.-"

I

I

I

I

I

I

I
.,%,

I

I
.__

i

I

I

_J

.i_,,l.J

o

A

o
:z:

,,r.

I

MII)_
h _o

I ,_

I

- C.9 (..9 U

[.-, _J (p

_.9c9 •

[

I
.y.

1

o. D._ o

_ _ o
0_ o

- _

t_,4 0

4-,

_o

/ _:_ •
I "-I

:>

:E>

:>

z

×
,-4

,.-]

o

m
..1=
r_

,.c
o

*,,-,I

i=

.,-I

3.6-25

EXECUTIVE MODULES

_c

W

,-¢
,-m

r..)

0
X

,z

o'1
E-+
X

X

U.I

_2

io

o

rO

<

_0

3.6-26

ANOPP DATA BASE MANAGEMENT

o
[-4 tO
03 _ E_

0 l._

I-4

[..,._,,-.I I..-I
I_I ,,,-'I

,-_
I_ 4--_ 0

•_ ,_1 ,--I
_ ,--I D-I in

°,-I

,r-_ ,x:/ .tJ

l/lOin

_ 0

. g_,
_ _'g

•,-.t _

if)

_HX

C_

,..-I

tj

,--t

0

o
,-4
,--4

0

0

if)

.el

0

0

a_
u

o

IT)

3.6-27

"U

_o _

EXECUTIVE MODULES

o3

_ E
0 '_
,-I

_o _
<.9 C9 _

0

_°o__oo

O
,--4,,d

I-t

m

"1
:n c_

.

_ 4-'

:_ O

>

Ul

_'-_X

,--t

,-4

u'_ f-,-,
I_ 1:2IX

0

,--4

0

0

.1:1

.,..t

r_

r_

o

.,-t

o3

_J

3.6-28

ANOPP DATA BASE MANAGEMENT

O

o_

r-4

m_ _'_

×_

/I _',"4 _ m/

;; H
,-t

O

,--.t

_0
0

0

@

_D
.,-I

OJ+JFJ+AT"_ ,.+

3.6-29

• EXECUTIVE MODULES

0

_ 0

f_

c.)

.,_

m
¢.)

m

0
m:

o

H

x

X

[-,U

M_
XX

3.6-30

ANOPP DATA BASE MANAGEMENT

4-,

[.9 .,-.4 ___

:>

Q)

_o _

O
O

•-_ _o

In

0 _D _-_

_ _-_

,-4

0 ._

r_
e-,
C.)

ig

[9

_z

-,-t

3.6-31

EXECUTIVE MODULES

_o3

LO_ OJ _

W _ E

_o

_--

0
_O

(.9 _

O

B_

_A

U

Z

0

0 _..tX
Z

4_

_.)

u

.,.4
_.-r.

Ul

Ul

t_

3.6-32

ANOPP DATA BASE MANAGEMENT

[-_lC) 0
(DC_ U

4J

U

O

-,4
n-"

N)

Z

,-t
,--4

,'4 _

"0
O

H

Z

3.6-33

EXECUTIVE MODULES

,.

9 0

r_

r.,
u

G)
.,4
_Z

W

.,4

Z

,..-t

0
"d

Z

3.6-3q.

ANOPP DATA BASE MANAGCHENT

l
o o_
"s' _a., 0 _,3

g_

3.6--35

aJ ;:_:
(D W

E

0 _

_ m

(..) _.,

llJ

O_
0 _J

c_

(J

tea

_2

r-i

,r-t

b_

EXECUTIVE MODULES

Q)
u

m: c m

,w

Ul,_J

0
0

o_
0

=n_ w

•,.t "_

Z

,--I
,-t

0

0
Z
<

Q;

m cn
t) <

m:
_n
E
m

0 U

ffl

%

,,4

&

['-'H

0

r_

I1)

'5"

(N

gt

,,-t

3.6-36

C

o ._
H "U ,_ I-'
C_ ,--I .IJ rO

__ :_C..-4 C E
C _0 _
: I rJ 0

E

-- _ _ 0

J_, H

'_ 0
---- Pd (b

_ _o _go
0 _

p,

Pt 12t__
_ o

_ g4 ,---t

I1)

ANOPP DATA BASE MANAGEMENT

o= _o
'

O
_J

_ nQ •

>

L_

[.,.4 o3

X
_d

m _

_ N

4J

0

r_

_D

co

_D

3.6-37

O4
0

I

I

E_o"°

_.,-i o

_0

.1-

o_

0

EXECUTIVE MODULES

0

(n

O_

0

<

3,6138

E,
f._

E,
r_

,£:

,-4
O

;:E

£,,

=E:
:E

ANOPP DATA BASE MANAGEMENT

_.

o

E,-_ o

'._ (D O

H

(3

'I_. _ m
H O, "t::_
::_ O
_-,

_ ,_ "_ ..I-'
_::l ,--I _

_ m 0
-

(D

4_

_

(..7,
X

[.-,

X

i-'
D.-,

[.-,

E-,
CO

[-4

,-'I

Q; CO

H

o
11., H

O

.l.O

r_)

(3

u'l

_2

If)

i1)

tm

3.6-39

EXECUTIVE MODULES

_o

_ OU_ _

,-4
,-4

,-4

0

O _

D_

. _-_

co F_

r_)

4J

r.
c.J

-c

t_9
°_

3.6-_0

ANOPP DATA BASE MANAGEMENT

[._ +J

oo

O
[-_°,-i

'
(5

n. _ o

'7

X

QI

,--I

m M

Nd

0

,.c:

,.c:
o

o
°_

t---

tin
,rt

3.6-_1

EXECUTIVE MODULES

D 0

_ _ o
,J
,C
c.3

0

m

:x:

E--

:E

o9

Q)

hO
-,4

Z

,...4

0

3.6 -u,2

ANOPP DATA BASE MANAGEMENT

r_

o

z

0o

o

0 H
Z
<

• 3.6-_3

EXECUTIVE MODULES

0
0

a., .,-t

_ _
. _.

®

,-4

j

0

4_

rj

c._

i-i

o

0,-i

o

o_

.3.6-4q,

ANOPP DATA BASE MANAGEMENT

[-_

oo

C
OE-_

cD • _

_ 0

_c
cD

.c
(3

u_

v_
c_

_0

cD

0

<

[...,

3.6-q,5

EXECUTIVE MODULES

Q)
4.J

_D 0
4-'

50,_ O

r.n

m"
U4
oo

:)<

O_

_0

<

G) X

°g
0
Z

su

.c:
o

:>_

o

fO

g)
o,-I
"r"

m_
z
:>
m:
mz

• 3.6-_.6

ANOPP DATA MANAGEMENT

:>

A

0

_o

=._

o_

,--I

0

,-4

O
Z
<

W

<
Z
:>
x

X

2

<

X

4_J

(.3

;12

t'M

o,.,t

3.6-47

EXECUTIVE MODULES

3.6._ Data Table Manager

3.6.4.1 Overview

Data Tables are a special class of one-record menlbers. To member manager they are

unformatted, one-record members of a data unit. To table manager they are internally

formatted table structures to be maintained in core while they are open. Allowance for

several types of table structures will be made. The same member/table cannot be open

simultaneously for processing by both table manager and member manager. The primary

purpose of table manager is to maintain the table/member in core across the execution of

several ANOPP modules and several openings and closings of the table.

The following is a general synopsis of events in the llfe of a table. When first

opened, a table is read into Global Dynamic core and its name is entered into a table

directory. When closed, the table remains in core and is logically closed in the di-

rectory. Subsequent opens will take place via the directory. If a table is altered

during the time it is open in core, it should have been opened with an open alter so that

a copy will be placed on the original menzber. This is necessary to preserve the integrity

of the table under the following conditions: a) while a table is logically closed in the

table directory, it can be removed from the directory either to make room for other tables

or because member manager is processing the member for wl_iting; b) when a table is removed

from the directory, a subsequent open will read a new copy of the member into core and

place its name in the table directory.

The following open, close, and interpolation routines work for any type table.

Specific table build routines are supplied for specific table types. For further informa-

tion about the structure of specific Data Table types, see Section 3.4.2.

All table manager routines require the NAME pamameter to identify the data unit and

member on which the table resides or will reside. NAME is a three word array with the

following structure:

NAME(l)

NAME(2)

unit name of the table (AS)

member name of the table (AS)

3.6-48'

ANOPP DATA BASE MANAGEMENT

NAME(3) reserved word for use by table manager and other data

management routines and not to be altered by user

3.6.4.2 Open Data Table Subroutines

Two open data table subroutines have been provided to give the user the ability to

specify at open time whether a table is to be altered or not altered during processing,

A data table that is opened with alter permission will be rewritten on its data member

when closed. One open without alter permission is assumed to be intact and is not re-

written. When a data table is closed it is retained in global dynamic core as an inactive

table so that subsequent opens need not reread it.

3.6.4.2.1 TM@PNA - Open with Alter Permission

Pur_i_os___e: TM@PNA requsts that an ANOPP data table be opened with permission to alter.

Format: CALL TM@PNA (NAME)

Arguments:

NAME - a three word array containing the names of the data unit and member on

which the data table resides. On return from TM_PNA, the third word

contains the IDX to the data table in Global Dynamic core.

Descri_: TM@PNA calls subprogram TMT@PN passing the NAME argument and a logical

alter flag which is set to true. TMT@PN performs validations to insure that the data

table is not already open to Data Table Manager (DTM) or Data Men_ber Manager (DMM). It

then searches the inactive table chain in the Data Table Directory for the named Table.

If the table is found, its entry is linked into the active table chain. Otherwise, sub-

program TMM@PN is called to read the table into global dynamic core and build an active

table entry. The IDX of the table is then swapped into the third word of the NAME argument;

the negation of the IDX of the NAME argument is stored in the DTD entry; and the table is

opened for use.

Error Conditions: TM@PNA aborts with a message if the table is already open to Table

Manager or Member Manager.

3.6-49

EXECUTIVE MODULES

3.6.4.2.2 TM@PN - Open Without Alter Permission

Purpose :

alter.

Format:

TM@PN requests that an ANOPP data table be opened without permission to

CALL TM@PN (NAME)

Arguments:

NAME - a three word array containing the names of the data unit and member on

which the data table resides. On return from TM@PN, the third word

contains the IDX to the data table in global dynamic core.

Description: TM_PN calls subprogram TMT@PN passing the NAME argument and a Icgical

alter flag which is set to false. TMT@PN performs validations to insure that the data

table is not already open to Data Table Manager (DTM) or Data Member Manager (DMM). It

then searches the inactive table chain in the Data Table Directory for the named table.

If the table is found, its entry is linked into the active table chain. Otherwise,

subprogram TMM@PN is called to read the table in global dynamic core and build an active

table entry. The IDX of the table is then swapped into _he third word of the NAME argu-

ment; the IDX of the NAME argument is stored in the DTD entry; and the table is opened for

use.

Error Conditions: TM_PN aborts with a message if the table is already open to Table

Manager or Member Manager.

3.6.4.3 TMCL_S - Close Data Table Subroutine

Purpose: TMCL_S closes a data table.

Format: CALL TMCL_S (NAME)

Arguments:

NAME - a three word amray containing the names of the data unit and member on

which the data table resides, and the IDX to the data table.

3.6-50

ANOPP DATA BASE MANAGEMENT

Description: TMCL_S locates the entry for the data table in the active table chain

in the Data Table Directory (DTD) and checks the NAME argument to insure that it matches

the NAME argument used in opening the table. If the table was opened to alter, it is

rewritten to its data member. It is then logically closed by swapping its IDX from the

NAME argument into its DTD entry and linking the DTD entry into the inactive table chain.

Error Conditions: TMCL@S aborts with an error message if the table being closed was

not open, if the closing name argument is not the same as the opening argument, or if the

data structure being closed is not a data table.

3.6.4.4 TMTERP - Data Table Interpolation

Pur_: Retrieve an interpolated value of a dependent variable from a data table

which is currently open.

Format: CALL TMTERP (NAME, ITYPE, X, Y, Z, ANS, ISTAT)

Arguments:

NAME Three word array with the following structure:
NAME(l) - unit name of the table

NAME(2) - member name of the table

NAME(3) - reserved; not to be altered by user.

ITYPE type of interpolation required:

ITYPE = 0 no interpolation permitted

ITYPE = i linear interpolation requested

X,Y,Z values of the independent variables for which the corresponding dependent

variable value is desired.

ANS - retrieved value if ISTAT : i; otherwise contents unaltered.

ISTAT status return:

ISTAT = i

ISTAT = 0

request complete; ANS contains dependent variable value
desired

request not completed; ANS does not contain dependent
variable value desired.

Description: TMTERP module attempts to retrieve from the Data Table specified by

NAME the desired dependent variable value.

3.6-51

EXECUTIVE MODULES

TMTERP validates that (i) the table is open, (2) the table type found in the table is

valid, (3) the interpolation procedure requested (ITYPE) is valid for this table, and (4)

the number of independent variables found in the table is within mange. If no error has

been detected in the validations, an attempt is made to retrieve the desired value.

If the dependent variable is not in the table, an interpolated value will be returned

if ITYPE does not equal zero. If the dependent variable is outside the range of the

table, extrapolation procedures will or will not be used according to the extrapolation

instructions found within the table. (These instructions are established by the user at

the time the table is built.)

The user will be informed via ISTAT if the dependent variable value desired has been

retrieved. The user must insure that the type of X, Y, Z, and ANS variable correspond to

the variable types expected by the table.

Error Conditions: TMTERP prints an error message and returns to the caller with

request not filled if the requested interpolation procedure is invalid. TMTERP aborts

with a message if the number of independent variables found in the data table is out of

range, if the table type is invalid, or if an error was detected in the table edit.

3.6.4.5 Data Table Building

Since data tables may be built in a functional module, subroutines are provided which

permit the user to build tables of the type supported by table manager (see Section 3.4.2

Data Table Types). Tables may also be built in the control statement stream by using the

TABLE CS (see the TABLE CS description in Section 3.5).

3.6.4.5.1 TMBLDI - Build Type 1 Table

Purpose :

Format :

Arguments :

NAME

Build data table of structure type i.

CALL TMBLDI (NAME, NINT, INT, ITYPDV, NIND, IDSCRP, Ii, 12, I3, IDV, IERR)

three word array with the following structure:

3.6-52

NINT

INT

IYYPDV

NIND

IDSCRP

Ii,12,I3

IDV

IERR

ANOPP DATA BASE MANAGEMENT

NAME(l) - unit name of table

NAME(2) - member name of table

NAME(3) - reserved; not to be altered by user.

number of elements in array containing interpolation procedures accept-

able on this table.

array containing integer codes of interpolation procedures acceptable

on this table. Valid codes are:

0 - no interpolation

1 - linear interpolation

type of dependent variable.

i - integer

2 - real single precision

3 - real double precision

Valid values are:

number of independent variables in this table -- i, 2 or 3.

array of dimension N!ND*4 containing a description of the NIND inde-

pendent variables.

(4'I-3) F_RMAT of the Ith independent variable:

0 - ordered position from one to IDSCRP(4*I-2). This

variable value array does not exist

1 - integer

2 - real single precision

3 - real double precision

(4'I-2) Integer number of Ith independent variable (.GE.0)

(4"I-1) Interpolation procedure if value desired is greater than

the largest value of the Ith independent variable

0 - no interpolation

1 - use closest independent variable value

2 - extrapolate (linear)

(4'I) Interpolation procedures if value desired is less than the

smallest value of the Ith independent variable (same values

as above)

start location of arrays containing independent variable values as

defined for data table type i. If an independent variable is format

type zero for ordered position, then the corresponding array is ignored.

NIND dimensional array of dependent variable values.

indicates if table was built:

IERR : 0 no error detected; table was built

IERR = -i error detected; table was not built

OalGINAZ PAGE IS
,OF PoOl_ QDALITy

3.6-53

EXECUTIVE MODULES

Description: The TMBLDI module builds a Data Table Type i. The input values NINT,

INT, ITYPDV, NIND, and IDSCRP are edited to insure they are in the range expected. The

independent variable arrays are validated to insure they are in monotonic sequence. If no

errors are detected in the edit, a Type 1 table structure is generated and put on the

unit/member specified by NAME. The table is not maintained in core but is available for

processing via TM_PN. If a duplicate table exists, it is replaced. A table by this name

may not currently be open either by a table manager or a member manager call. The user is

informed via IERR if an error occurred which prevented the building of the table.

Error Conditions: TMBLD1 writes an error message if the unit the table was to be

built on is not in the unit directory, if there is insufficient core to build a table, or

if errors were detected in editing the values to be used in building the table.

3.6.4.6 Auxiliary Modules

An auxiliary module performs a function common to all table manager modules and is

available for use by these modules.

3.6.4.6.1 TMERR - Table Manager Error Message Writer

Subroutine TMERR (NUM, NAME, IVAL, IRAY, L) processes fatal and non-fatal errors for

the table manager modules and the DBM control statement TABLE (XTB). NUM, the integer

number of the error message to be printed, is negative if the error is fatal and positive

if the error is non-fatal. TMERR prints the informative error message (indicated by the

absolute value of NUM) with the specific value(s) causing the error condition (indicated

by input values NAME, IVAL, IRAY). If the error is fatal, ANOPP is aborted by a call to

XEXIT. If the error is non-fatal, a tracebaek is performed to the major table manager

module called by the user.

"3.6-51_

ANOPP DATA BASE MANAGEMENT

3.6.4.7 Hierarchy Charts

A hierarchy chart is a graphical representation of the logical relationships between

modules. Figures 24-27 are the hierarchy charts for the table manager modules and the

auxiliary module.

In general, only table manager modules appear as a block entity in the charts and all

table manager modules appear at least once. The charts are in alphabetical order with

respect to module name except for Figure 24 which represents the logical grouping of the

table manager modules. A hierarchy for the auxiliary module is also among the alpha-

betized charts.

A module which is not part of table manager but is called by a table manager module

is not shown as a block entity, but is listed at the bottom of the chart. The module may

be an ANOPP executive module which is part of Member Manager, the Dynamic Storage Management

System, or the General Utilities. It may also be a subprogram provided by one of the CDC

operating system libraries. In either case, the module is generally of a service or

utility nature and may be called many times by various table manager modules.

Symbols and headings used in the hierarchy charts are given below:

NAME

purpose

r --

I NAME

L J

NAME - module name

purpose - brief description

represents logical module not existing as

entity. It is used for logical groupings.

indicates lower module is called by the

higher module.

implies logical grouping with no direct

relationship.

In upper right corner of module block
indicates module is expanded as a separate

entity

" 3.6-55

EXECUTIVE MODULES

ANOPP Modules Called: a list of DBM, DSM, and General Utility

modules called by the modules in this figure.

CDC System Library Subprograms Called: a list of subprograms called by the modules

in this figure and which are not part of

ANOPP but are provided by CDC NOS operating

system libraries.

• 3.6-56

ANOPP DATA BASE MANAGEMENT

_.

_-1%9

<:z

t m:

I I

I..... _i

I

I

I

I

I

I

l--

-i

I

I

I

I---i

I

<_4 J
z to,_

isu.,-i

_oE

_m

_>

L

Z,-_ 4J

_r00 0J
_ _ _[-_,j:: P

[-_ 4._,-4
g:._ <

O

o

_ _ to
_-1 0 E-,

-- 0 ,-4

I

I

I

I m

_'.,-I

,,n

4J
Z

,,-4

t_
4-'

.c: :_

co m .el 4-'

.,4

_o _

_o

_H

,-i

ct_ ._ 0

_ °,-.I
_) I:::1
ffl

@
,-4 @

0 @

O
C_m _

•,-I r-4

E-_ 0 to

• m

r..

@

•,-4 ,--t

I.,_ o m
[-,rOE--,

%

&&.

,--I
= &j..

o

m

to
m:

,-4

to

04

@

.4

8.6-57

EXECUTIVEMODULES

Q)
o

Z
H

x
Q;

C.) C.) C.)

'_ XX

X E...0X
0.-._ g:l

O X
Z

,.4

m

(tl

0

n.

D
F.I

._

|
4O

U H

4o

0

m

M

,,.4

3.6-58

ANOPP DATA BASE MANAGEMENT

L_

Z
H

O
.,4

[._ _ ,--'1 0

. o_

°,-I

._ _o

X

H _

,-.4

J _ .,.4
Ul u'J

_ H

,--4

0

_.a ffl

,-.t

_g

__ H

.-4

,'4

0

ffJ

Z
-

_O X
0

4-'

(3

,g:
0

0

X

I-4

°_

3.6-59

EXECUTIVE MODULES

.

,-4

0 "_ (u|

t b'-4 _" /

°1

X

4_

X .M

4J
' c:

H

M H

_ ",_

X ,-4
0

H

-

[-, ,l_ 0

XX •
.7 4._

®

_2

-
X

GI

0

rl

_ d

_ HX
0

.g
,--I
,-I

0

i=

0

_3

4J

t.l'l

0
g:l
0

m

0

m

J

-,.4

H

3.6-60

EXECUTIVE MODULES

3.7 DYNAMIC STORAGE MANAGEMENT SYSTEM (DSM)

3.7.1 Overview

The ANOPP Dynamic Storage Manager (DSM) provides a method of allocating and releasing

core storage within ANOPP. The boundaries of the storage area to be managed are defined

to be from the end of the longest overlay segment of the presently executing executive or

functional module to the last word of the field length.

Obviously, as different executive and functional modules are called into execution,

the available free storage fluctuates. Therefore, in order to provide for executive

inter-module communication and for the storage of ANOPP directories and tables, a section

of free storage, known as "Global Dynamic Storage" (GDS), has been defined. The starting

address of GDS is established by the Executive Initialization Phase (XBS) and must be

beyond the longest segment of the largest module which will be executed by a particular

ANOPP run.

The rest of the free storage is available for intra-module usage as "Local Dynamic

Storage" (LDS). LDS begins with the word following the longest segment of a particular

module and ends at the start of GDS.

Addressing of Dynamic Storage by the user is accomplished by indexing relative to a

fixed common block - XAN@PP. The FORTRAN statement C_MM_N/XAN@PP/IX(1) must be included

in every program and subroutine that directly references dynamic storage. DSM will then

return an index (IDX), relative to XANCPP, whenever a block of dynamic storage is reserved

(DSMG). The variable containing the index is Thereafter reserved for DSM use. The con-

tents of IDX must not be changed by the user unless the reserved block has been released

(DSMF) or another variable is provided To DSM (DSMS).

At the beginning of execution, all core in The dynamic storage areas belong to Two

free blocks, one for LDS and one for GDS. As blocks are reserved and released during

execution, dynamic storage will be divided into a number of separate blocks, some reserved

and some free. To minimize fragmenting of dynamic storage, DSM will collapse a block of

3.7-I

EXECUTIVE MODULES'

dynamic storage into adjacent free blocks, when it is released, to form a single free

block.

Still, fragmentation of free blocks may reach the point where a single block of the

requested size cannot be reserved for the user. When this occurs, the free blocks will be

consolidated into one free block. This occurs automatically without the user's knowledge

and will involve the relocation of reserved blocks and the updating of their respective

indices.

If the user wishes to inhibit consolidation, he may "lock" dynamic storage using a

DSM utility (DSML). When The situation requiring the lock is passed, the user must then

"unlock" dynamic storage (DSMU) to re-enable consolidation. The results of absolute

addressing schemes in unlocked dynamic storage are unpredictable and best avoided.

Finally, DSM provides a utility to expand a reserved block (DSMX). DSMX will attempt

to expand a reserved block by reserving any adjacent free storage. If that is not possi-

ble, DSMX will reserve a new, larger block, relocate the contents of the original block,

and update the user's IDX. DSMX will relocate The specified block regardless of whether

dynamic storage is locked or unlocked.

3.7.2 Dynamic Storage Structure

The Dynamic Storage Management System maintains two distinct storage areas in the

free storage area defined as the block of core from the end of The longest overlay segment

of the presently executing executive or functional module to the last word of field length.

The area known as Global Dynamic Storage (GDS) begins somewhere beyond The longest

segment of the largest module executed duming the ANOPP Pun, and ends with the last word

of field length. The length of GDS is determined by The LENGL parameter on the AN_PP

control statement, if specified, or a system default that provides a minimum length

necessary for ANOPP to run. GD$ is established during the Initialization Phase (XBS) for

The life of the ANOPP run.

3.7-2

DYNAMIC STORAGE MANAGEMENT SYSTEM (DSM)

The area known as Local Dynamic Storage (LDS) begins with the first word following

the overlay segment in current execution and uses all storage not already allocated for

GD$. LDS is initialized by each functional or executive module according to the length of

its overlay segment. The positioning of LDSA is accomplished by loading a labeled common

block after the longest overlay segment of the module. The definition and placement of

this common block is the responsibility of the user. The name of this common block must

be unique and by convention begins with LDSA. Each functional or executive module that

initializes LDS must also release LDS before control passes to another module.

The structure of the two storage areas LDS and GDS is identical. Each has three

header control words and a single traile_ control word that identify the storage type (GDS

or LDS), give the pointer to the first block in the free storage chain, and delimit the

storage area (see Dynamic Storage Control Words Section).

As the free storage in GDS and LDS is reserved by users, and subsequently released,

the free storage becomes fragmented. In order to keep track of these fragmented free

storage blocks, each storage area maintains its own free storage chain. As part of this

chain, each free block contains a forward and a backward pointer to other blocks in the

chain.

3.7.2.1 Dynamic Storage Control Words

The Dynamic Storage control words include Three header words and a single trailer

word on both Global Dynamic Storage and Local Dynamic Storage. These header and trailer

control words are initialized by The DSMI module at the time the Global Dynamic and Local

Dynamic storage areas are initialized by DSMI.

The header control words are the Three words beginning with The first word of the

dynamic storage area (GDS or LDS). Word 1 is initialized by DSMI with the dynamic storage

type (3HGDS or 3HLDS). Word 2 is initialized by DSMI with the relative address of the

first block in the free storage chain. Word 3 is initialized by DSMI with a convenient

bit pattern (all bits on) for delimiting the storage area.

3.7-3

EXECUTIVE MODULES

The trailer control word is also initialized by DSMI with a convenient bit pattern

(all bits on) for delimiting The storage area.

EXAMPLE:

IX(SADDR)

IX(SADDR+I)

IX(SADDR+2)

Storage words

available to

user

IX(EADDR)

LDS or GDS

SADDR+3

77777777777777777777777777777777777777

(This area holds blocks

reserved by users of The

system, plus the free

storage chain.)

77777777777777777777777777777777777777

3.7.2.2

where SADDR and EADDR are parameters from The /XDSMC/ common block.

SADDR is The relative address of The start of dynamic Storage area.

EADDR is the relative address of The end of dynamic storage area.

Reserved Block Control Words

The reserved block control words include Three header words at the beginning of each

reserved block and one trailer word at The end of The block.

Word 1 of The header control words of a reserved block is defined as the complement

of the length of The reserved block. In this case, length does not include the reserved

block control words. Word 2 of the header control words is defined as The name (1-6

characters) of the user That meserved The block. User name is Taken from the USER para-

meter on The DSMG call to reserve the bloc_ Word 3 of the header control words is set to

the relative address of The user's IDX var1_le.

The Trailer control word of a reserved block, like the first header control word, is

set to The complement of the block length.

Reserved block control words are defined by The DSMG module when The block is re-

served.

3.7-_

EXAMPLE:

IX(IDX-3)
IX(IDX-2)
IX(IDX-I)

IX(IDX,LENGTH)

DYNAMICSTORAGEMANAGEMENTSYSTEM(DSM)

RESERVEDBLOCKSTRUCTURE
-LENGTH

USER(i-6 CHARACTERS)
IL_C(IDX)

-LENGTH

Length

whereILOCis an integer function that determinesthe addressof the IDX

variable relative to /XAN_PP/.

Blocks may be reserved in either Global Dynamic Storage or Local Dynamic Storage.

After initialization of Global Dynamic Storage and Local Dynamic Storage, and one block has

been reserved with IDX = IDXA and length LENGTHA in GDS, the storage area appears as

follows:

3.7-5

EXECUTIVEMODULES

IX(LSADDR)
IX(LSADDR+I)
IX(LSADDR+2)

IX(LEADDR)
IX(GSADDR)
IX(GSADDR+I)
IX(GSADDR,2)
IX(IDXA-3)
IX(IDXA-2)
I×(IDXA-I)

IX(IDXA+LENGTHA)

IX(GEADDR)

LDS
LSADDR+3

777777777777777777777777777777777777777

FREE STORAGE

777777777777777777777777777777777777777

GDS

GSADDR+3+LENGTHA+4

777777777777777777777777777777777777777

-LENGTHA

USER

IL_C(IDXA)

RESERVED BLOCK

-LE_THA

FREE STORAGE

777777777777777777777777777777777777777

LENGTHA

where ILWC returns the address of the IDXA variable relative to /XAN@PP/ and

where /XDSMC/ common block parameters have the following definltions:

LSADDR - LDS start relative to /XAN@PP/

LEADDR - LDS end relative to /XAN@PP/

GSADDR - GDS start relative to /XAN@PP/

GEADDR - GDS end relative to /XAN_PP/.

3.7.2.3 Free Storage Control Words

Free storage in GDS and LDS is maintained in a chain for internal con_ol. There-

fore, each free block header contains a forward pointer and a backward pointer that

establishes the block's place in the chain. The free block control words include a three-

word header and a trailer word.

• 3.7-6

DYNAMIC STORAGE MANAGEMENT sYSTEM (DSM)

Word 1 of the header control words contains the length of the free storage block.

This length excludes the free block control words. Word 2 of the header contains the

address relative to /XAN@PP/ of the next block (forward pointer) in the free chain. Word

3 of /he header contains the address relative to /XAN_PP/ of the previous block in the

chain (backward pointer).

The trailer control word of a free block, like word 1 of the header, contains the

length of the block. This length excludes control words.

When either storage area GDS or LDS is initialized, all words in that storage area

belong to the free storage chain, which has 0nly one block. The DSMI module defines the

control words for the single block in the free storage chain as well as the control words

for the storage area.

EXAMPLE:

IX(AVAIL)

IX(AVAIL+l)

IX(AVAIL+2)

IX(AVAIL+LENGTH+3)

FREE BLOCK STRUCTURE

LENGTH

NEXT

PREVIOUS

LENGTH

LENGTH

where AVAIL is the address relative to /XAN@PP/ of free block

3.7.3 Dynamic Storase Management System User Modulss

Although dynamic storage is intended for use by the ANOPP Executive and Data Manage-

ment Systems, functional modules may also make use of DSM. The calling sequence for most

DSM subroutines is as follows:

CALL DSMx (USER, TYPE, IDX, PI...,Pn)

3.7-7

EXECUTIVE MODULES

USER - integer variable defining name of calling module as a one to six character

Hollerith constant

TYPE - defines the dynamic storage type (LDS or Local Dynamic Storage and GDS

for Global Dynamic Storage)

IDX - user defined integer variable which will contain the location of a block

of dynamic storage relative to a reference point. For the ANOPP system,

the reference point is the /XAN_PP/ common block. The address of IDX

will be stored in the block of dynamic storage reserved for USER, and

the index stored at that address will be updated whenever the dynamic

storage block is moved due to a consolidation request.

PI-Pn - miscellaneous parameters required by the specific DSM module.

The USER parameter required by most DSM modules is the key_ to ownership of a reserved

block of storage. When a storage block is reserved, the name of the user making the re-

quest is stored in the block. Subsequent operations on that block of storage are per-

mitted only for the appropriate user.

3.7.3.1 DSMB - Determine Dynamic Storage Boundaries

Purpose: To retrieve the start and end addresses of Local Dynamic Storage (LDS) for

subsequent initialization of LDS by DSMI.

Format: CALL DSMB(A)

Arguments:

A - array in labeled common LDSAxxx, supplied by the user, which has been reserved

for Local Dynamic Storage. On output, A(1) contains the index relative to

/XAN@PP/ to start of Local Dynamic Storage. A(2) contains the index relative

to /XANCPP/ to end of Local Dynamic Storage.

-:3.7-8

DYNAMIC STORAGE MANAGEMENT SYSTEM (DSM)

Description: The DSMB module should be called when a module is integrated into the

ANOPP system to get the start and end addresses of Local Dynamic Storage. On entry,

Global Dynamic Storage must already be initialized.

Labeled common LDSAxxx is loaded immediately after the user's longest module to give

him full benefit of the available storage. DSMB calculates the start of the array A in

labeled common LDSAxxx as an index relative to /XAN@PP/ and stores the index in the first

word of the array. This is the index to the beginning of LDS.

DSMB calculates the end of LDS as an index relative to /XAN_PP/ and stores the index

in A(2). The end of LDS is calculated as the address of the word immediately preceeding

the start of Global Dynamic Storage.

With the start and end address of LDS stored in the first and second word of array A,

the user may initialize LDS via DSMI.

Error Conditions: DSMB aborts with a message if LDS and GDS boundaries overlap.

3.7.3.2 DSMD - Dynamic Storage Dump

reserved block.

Format:

To dump the contents of Global or Local Dynamic Storage or of a single

CALL DSMD (USER, TYPE, IDX)

Arguments:

USER - one to six-character name of user for dynamic storage area or reserved

block.

TYPE - three-character code indicating storage type (SHGDS or SHLDS).

IDX - index relative to IX of reserved block to be dumped, or zero, if entire

storage area is to be dumped.

Description: The DSMD module should be called to dump all dynamic storage or a

single reserved block. Prior to performing the dump, DSMD validates the USER and TYPE

arguments for a dynamic storage dump or USER, TYPE, and IDX for a reserved block dump.

3.7-9

EXECUTIVEMODULES

DSMDprints the contentsof the dynamicstorageareacontrol wordsincluding storage

type, first free block pointer, dynamicstorage, start address,andendaddress. Thenthe

contentsof the storageareaor the reservedblock are dumped.For the dumpof an entire

storagearea, only the contentsof control wordsare printed for free blocks, while all

wordsin reservedblocksare printed.

Error Conditions: DSMD aborts with a message if the dynamic storage type is not

initialized, if the dynamic storage type is invalid, if the user is invalid, or if the IDX

is invalid.

3.7.3.3 DSMF - Free a Reserved Block of Dynamic Storage

Purpose:

Format:

To free a block of dynamic storage previously reserved by a call to DSMG.

CALL DSMF(USER, TYPE, IDX)

Arguments:

USER - one to six-chamacter name of user requesting to free the block residing

at the address specified by IDX in storage area identified by TYPE.

TYPE - three-character code identifying storage area where block is to be freed

resides.

IDX - index relative to /XAN@PP/ for reserved block that is being freed.

Description: The DSMF module frees a reserved block and retumns it to the free

storage chain making it available for use. However, before freeing the block, DSMF

validates that the user freelng the block is the same user that reserved the block and

that the storage type and IDX are valid.

The header and trailer contr_l words of the reserved block (see Section 3.7.2) are

defined to make the block part of the free storage chain. The con_ol words will reflect

block size and forward and backward pointers to the free storage chain.

If either, or both, of the blocks bordering the newly freed block is(are) also a free

block, the newly freed block is collapsed into the adjacent free block to form a larger

3.7-I0

DYNAMIC STORAGE MANAGEMENT SYSTEM (DSM)

free block. Control words for the newly formed block are redefined to reflect the new

size and adjustment in the forward and backward pointers to the chain.

Error Conditions: DSMF aborts with a message if there is an invalid user, dynamic

storage type or IDX.

3.7.3.4 DSMG - Gel A Block of Dynamic Storage

Pur___: To obtain a block of dynamic storage from the free storage chain, reserve

it for the user, and return the IDX of the reserved block.

Format: CALL DSMG(USER, TYPE, IDX, MIN, MAX, LEN)

Arsuments:

USER - one To six-character name of user reserving a block.

TYPE - three-character code indicating storage area where block should be

reserved (3HGDS or 3HLDS).

IDX - (OUTPUT) address relative to /XAN_PP/ for reserved block. IDX points

to first usable word of block (first word following reserved block

header).

MIN - minimum number words of dynamic storage required by user.

MAX - maximum number words of dynamic storage desired by user.

LEN - (OUTPUT) length of dynamic storage block reserved for user. Length

excludes reserved block control words. If there was an insufficient

amount of free storage available to satisfy user's request, the LEN

parameter is set to zero on output.

Description: The DSMG module attempts to locate and reserve a block of dynamic

storage _hat will satisfy the user's requirements. DSMG searches the free storage chain

for a free block that will satisfy the user's maximum request.

If such a block is found, The maximum number of words requested is reserved for the

user, and The reserved block control words are defined accordingly. The address relative

to /XAN@PP/ of the reserved block is returned to the user in the IDX variable.

3.7-11

ORIGINAL PAGE IS

OF POOR QUALITY

:EXECUTIVE MODULES

If the entire free block is used in allocating the reserved block, then the free

block is removed from the free storage chain. In order to remove a block from /he free

chain, the forward pointer of the preceeding block in the chain and the backward pointer

of the next block in the chain are redefined to point to each other. This completely

removes the block from the free chain.

EXAt_LE: Assume that on entry to DSMG Local Dynamic Storage has the following

configuration.

IX(LSADDR)

IX(AVAILA)

IX(IDXB)

LDS

AVAILA(IST FREE BLOCK)

7777777777777777777777777777777777777

LENGTHA

AVAILC(FORWARD POINTER)

LSADDR(BACKWARD POINTER) (I)

FREE BLOCK A OF LENGTH LENGTHA

LENGTHA

-LENGTHB

USERB

IL_C(IDXB)

RESERVED BLOCK B OF LENGTH

LENGTHB

-LENGTHB

IX(AVAILC) LENGTHC

ZERO (FORWARD POINTER) (2)

AVAILA (BACKWARD POINTER)

FREE BLOCK C OF LENGTH LENGTHC

LENGTHC

IX(LEADDR) 7777777777777777777777777777777777777771

(1)The backward pointer of the first block in the free chain always points to the

start of the dynamic storage area.

(2)The for_ard pointer of the last block in the free chain always contains zero.

3.7-12

DYNAMIC STORAGE MANAGEMENT SYSTEM (DSM)

Also assume that the user requests a block where MIN = MAX =

uses all of free block A and removes block A from the free chain.

ing configuration. An e indicates a changed entry.

IX(LSADDR)

IX(IDXA)

IX(IDXB)

IX(AVAILC)

IX(LEADDR)

LDS

AVAILC

77777777777777777777777777777777777777

-LENGTHA

USERA

!L@C(IDXA)

RESERVED BLOCK A

OF LENGTH LENGTHA

-LENGTHA

-LENGTHB

USERB

IL_C(IDXB)

RESERVED BLOCK B

OF LENGTH LENGTHB

-LENGTHB

LENGTHC

ZERO (FORWARD POINTER)

LSADDR (BACKWARD POINTER)

FREE BLOCK C

OF LENGTH LENGTHC

LENGTHC

77777777777777777777777777777777777777

LENGTHA. Then DSMG

Then LDS has the follow-

It, the example above, IL@C is a function that returns an address relatlve to /XAN@PP/,

_nd /XDSMC/ parameters are defined as follows:

LSADDR - LDS start address relative to /XAN#PP/

LEADDR - LDS end address relative to /XAN@PP/

3.7-13

EXECUTIVE MODULES

However, if only a portion of the free block is used in allocating a reserved block,

then the free block maintains its place in the free chain but is reduced in size. Con1-col

words for the reduced free block are redefined to reflect the block's reduced size. In

addition, the forward pointer of the preceeding block in the chain and the backward

pointer of the next block in the chain are redefined Zo reflect the reduced free block's

next location.

EXAMPLE: Assume that on entry to DSMG local dynamic storage looks exactly like it

did at the beginning of the previous example. Also assume that the user requests a block

where MIN = MAX<LENGTHA. Then DSMG reserves only a portion of free block A, and LDS has

the following configuration.

3.7-1 v,

DYNAMIC STORAGE MANAGEMENT SYSTEM (DSM)

IX(LSADDR)

IX(IDXX)

IX(AVAILA')

IX(IDXB)

IX(AVAILC)

IX(LEADDR)

LDS

AVAILA'

77777777777777777777777777777777777

-LENGTHX

USERX

ILOC(IDXX)

RESERVED BLOCK X

OF LENGTH LENGTHX

-LENGTHX

(LENGTHA-LENGTHX-4)

AVAILC (FORWARD POINTER)

LSADDR (BACKWARD POINTER)

REDUCED FREE BLOCK A

OF LENGTH LENGTHA-LENGTHX-4

(LENGTHA-LENGTHX-_)

-LENGTHB

USERB

ILOC(IDXB)

RESERVED BLOCK B

OF LENGTH LENGTHB

-LENGTHB

LENGTHC

ZERO (FORWARD POINTER)

AVAILA v (BACKWARD POINTER)

FREE BLOCK C

OF LENGTH LENGTHC

LENGTHC

77777777777777777777777777777777777

where IL_C and /XDSMC/ parameters LEADDR and LSADDR are defined in the previous example.

3.7-15

_EXECUTIVE MODULES

If attempts to find a free block that will satisfy user's maximum request fail, but

there are enough words in all fragmented free blocks combined to provide at least the

minimum request, then a consolidation of free storage is performed.

After consolidation, the largest block in the free chain is examined to see if it

satisfies the maximum request. (Note that if the dynamic storage area was locked, the

consolidation is a null process and the storage area is unchanged. However, if the

consolidation is actually accomplished, then all available words in the free chain have

been consolidated into a single block.) If the free block satisfies the maximum request,

all or part of the block is reserved for the user. If the free block satisfies only

minimum, or some value between minimum and maximum, then all or part of the free block is

reserved accordingly.

If all attempts fail to satisfy the user's request, the block length LEN returned to

user is set to zero.

Error Conditions: DSMG aborts with a message if an invalid storage type is requested,

if the storage type requested is not initialized, if the minimum block size requested

exceeds maximum block size requested, if LDS or GDS has been overlayed, or if the minimum

or maximum block size requested is negative or zero.

3.7.3.5 DSMI - Initialize Dynamic Storage

Purpose: To initialize the control words for the specified dynamic storage type.

addition, to initialize the control words for the single free block in the free storage

chain for the dynamic storage type initialized.

Format: CALL DSMI(USER, TYPE, START, END)

Arguments:

USER one to six-character name of user requesting initialization.

TYPE - three-character code indicating stoma[e type to be initialized (3HGDS or

3HLDS).

In

3.7-16

DYNAMIC STORAGE MANAGEMENT SYSTEM (DSM)

START - integer variable containing The absolute address of the start of dynamic

storage.

END - integer variable containing the absolute address of the end of dynamic

storage.

Description: The DSMI module must be called to initialize a dynamic storage area

before that storage area may be used. DSMI initializes the dynamic storage control words

described in Section 3.7.2.1 Dynamic Storage Control Words, and The free block control

words described in Section 3.7.2.3 Free Storage Control Words.

Error Conditions: DSMI aborts with a message if the storage area being initialized

has already been initialized, if the start address for the storage area is invalid, if the

user requesting initialization is invalid, if there is insufficient storage length for

initialization, or if LDS/GDS boundaries overlap.

3.7.3.8 DSML - Look Dynamic Storage

Purpose: To prohibit consolidation of fragmented dynamic free storage.

Format: CALL DSML(USER, TYPE)

Arsuments:

USER - one to six-character name of user imposing lock condition on dynamic storage.

TYPE - three character code indicating dynamic storage on which lock condition is

being imposed.

Description: The DSML module increments the user lock against consolidation of free

storage for the dynamic storage area specified. However, before incrementing the user

lock, DSML does a consolidation of free storage. The consolidation relocates all reserved

blocks to contiguous words of storage immediately following the storage area's control

words. This forces all free words of storage, however fragmented, into a single free

block.

If DSML has been called previously, such that the user lock has already been incre-

mented, Then the consolidation becomes a null process and DSML increments the user lock

again.

8.7-17

EXECUTIVE MODULES

Error Conditions: DSML aborts with a message if the storage type is invalid.

3.7.3.7 DSMQ - Query to Obtain Size of Largest Available Block

P_pose: To return the length of the largest amount of free storage available.

Format: CALL DSMQ(USER, TYPE, LEN)

Arguments:

USER - one to six-character name of user making inquiry.

TYPE - three-character code indicating dynamic storage area being queried.

LEN - (OUTPUT) length of largest amount of free storage available in storage

area specified. The LEN parameter will be set to zero if no free storage

is available.

Description: The DSMQ module returns the amount of free storage available to the

user. If the storage area specified is locked against consolidation, the length returned

is the length of the largest free block available. If the storage area is not locked

against consolidation, DSMQ will consolidate the free storag_ and return the length of the

resulting free block.

Error Conditions: DSMQ aborts with a message if the storage type is invalid.

3.7.3.8 DSMR - Release Dynamic Storage

Purpose: To release dynamic storage previously initialized via DSMI.

Format: CALL DSMR(USER, TYPE)

Arguments:

USER - one to six-character name of user releasing dynamic storage.

TYPE - three-character code indicating dynamic storage type (3HGDS or 3HLDS).

Description: The DSMR module releases dynamic storage previously initialized via the

DSMI module. The user must call DSMR to release Local Dynamic Storage before a new over-

lay segment is introduced and control passes to another user.

3.7-18

DYNAMIC STORAGE MANAGEMENT SYSTEM (DSM)

Users are not prevented from releasing Global Dynamic Storage, but unpredictable

results are certain to occur since the ANOPP system uses GDS for its directories and

tables.

Releasing a storage area causes the user lock against consolidation to be cleared.

Error Conditions: DSMR aborts with a message if the user does not own the area of

storage being released Or if the storage type is invalid.

3.7.3.9 DSMS - Swap IDX Variables

Purpose: To change the address of an IDX maintained by Dynamic Storage Management

System to another address.

Format: CALL DSMS(USER, TYPE, @IDX, NIDX)

Arguments:

USER one to six-character name of user swapping IDX variables.

TYPE - three-character code indicating dynamic storage type (3HGDS or 3HLDS).

_IDX ("old IDX") the IDX variable that is currently defined to Dynamic Storage

Management System as having the index relative to /XAN@PP/ of the reserved

block.

NIDX - ("new IDX") the IDX variable that, on output from DSMS, contains the

index value originally contained in the @IDX parameter.

Description: The DSMS module may be used when the user wishes to redefine an IDX

variable. DSMS sets the new IDX variable NIDX to the value of the old IDX variable _IDX.

In addition, word 3 of the reserved block control words is redefined to contain the address

relative to /XAN@PP/ of the new IDX variable. Therefore, in subsequent DSM operations

where the reserved block is relocated due to free storage consolidation the new IDX

variable will be updated to contain the new location of the reserved block.

Error Conditions: DSMS aborts with a message if the storage type is invalid, if the

user is invalid, or if the IDX is invalid for the reserved block.

3.7-19

EXECUTIVEMODULES

3.7.3.10 DSMU- UnlockDynamicStorage

Purpose: To unlock dynamic storage to permit consolidation of free storage.

Format: CALL DSMU(USER, TYPE)

Arguments:

USER - one to six-character name of user imposing lock against consolidation.

TYPE - three-character code indicating storage type (3HGDS or 3HLDS).

Description : Each time DSMU is called the user lock on the storage type specified

is decremented by one. Therefore, if DSML has previously been called more than one time

to increment the lock, a single call to DSMU does not insure that the user lock against

consolidation of free storage is cleared.

Error Conditions: DSMU aborts with a message if the storage type is invalid or if it

is already unlocked.

3.7.3.11 DSMX - Expand a Reserved Block

Purpose: To expand the size of a reserved block, if a free block of the required

size is below and adjacent, or if there is an available free block in the free storage

chain that will satisfy the increased size of the expanded block.

Format: CALL DSMX(USER, TYPE, IDX, MINI, MAXI, LEN)

Arguments:

USER - one to six-character name of user requesting expansion.

TYPE - three-character code indicating storage area where block resides (3HGDS

or 3HLDS).

IDX - address relative to /XAN_PP/ of block to be expanded.

MINI minimum increment of additional storage required by user (must be greater

than zero).

MAXI - maximum increment of additional storage required by user (must be greater

than or equal to MINI).

3.7-20

DYNAMIC STORAGE MANAGEMENT SYSTEM (DSM)

LEN (OUTPUT) new length of reserved block after expansion. This parameter

is set to zero if expansion was not accomplished.

Description: The DSMX module is called to increase the size of a reserved block

previously reserved via the DSMG module. If there is a free block adjacent and immediately

following the reserved block, then the free block is examined for the minimum/maximum

increment. If the free block satisfies minimum or maximum increment, or a value between

the two, _hen the reserved block is expanded into the free block below.

If all of the free block below is required to expand the reserved block, then the

feee block is removed from the free storage chain and the reserved block trailer word is

moved to account for the increased size of the block. In addition, the reserved block

size contained in the header and trailer control words is incremented appropriately.

If only a portion of the free block below the reserved block is required for ex-

pansion, then the free block is reduced in size but remains in the free storage chain.

Control words for the expanded reserved block and the reduced free block are adjusted

accordingly. In addition, forward and backward pointers in the free storage chain are

adjusted according to the new start location of the free block.

If there is no free block following the reserved block, or if the free block below

and adjacent is insufficient to satisfy either minimum or maximum increment, then the

storage area is searched for a free block sufficient in size to hold the expanded reserve

block. If such a free block is found to satisfy minimum or maximum or a value between the

two, then the reserved block is relocated and expanded into the free block. The space

allocated for the original reserved block is then freed via DSMF. The index contained in

the user's IDX variable is adjusted to reflect the reserved block's new location.

If all attempts to expand the reserved block should fail, then the length parameter

LEN is set to zero. Otherwise, on return from DSMX, the LEN parameter contains the new

expanded size of the reserved block.

Error Conditions: DSMX aborts with a message if the minimum increment exceeds the

maximum increment, or if either the minimum or maximum increment is negative or zero.

3.7-21

i _'_U_-_~,. -

EXECUTIVE MODULES

3.7._ Auxiliary Modules

A DSM error processor may be called by any one of the DSM modules if an error condi-

tion is encountered during its execution.

3.7.4.1 DSM Error Message Writer (DSMERR)

Subroutine DSMERR (NUM, IVALI, IVAL2) processes fatal and non-fatal DSM errors. NUM,

the integer number of the error message to be printed, is negative if the error is fatal

and positive if the error is non-fatal. DSMERR prints the informative error message

(indicated by the absolute value of NUM) with the specific value(s) causing the error

condition (indicated by the input values IVALI, IVAL2). If the error is fatal, ANOPP is

aborted by a call to XEXIT. If the error is non-fatal, a traceback is performed to the

user callable DSM module that was active when DSMERR was called.

3.7.5 Hierarchy Charts

A hierarchy chart is a graphical representation of the logical relationships between

modules. Figures I-9 are the hierarchy charts for the DSM modules and the auxiliary

module.

In general, only DSM modules appear as a block entity in the charts and all DSM

modules appear at least once. The charts are in alphabetical order with respect to

module name except for Figure 1 which represents the logical grouping of the DSM modules.

A hierarchy chart for the auxiliary is also among the alphabetized charts.

A module which is not part of DSM but is called by a DSM module is not shown as a

block entity, but is listed at the bottom ef the chart. The module may be an ANOPP

executive module which is a General Utility or a subprogram provided by one of the CDC

operating system libraries. In either case, the module is of a utility nature and may be

called many times by various DSM modules.

3.7-22

DYNAMIC STORAGE MANAGEMENT SYSTEM (DSM)

Symbols and headings used in the hierarchy charts are listed below:

NAME

purpose

I NAME I

I I
L. J

NAME - module name

purpose - brief description

Represents logical module not existing as

entity. It is used for logical grouping.

indicates lower level module is called by

higher level module.

implies logical group with no direct

relationship

in upper right corner of module block

indicates module is expanded as a separate

hierarchy.

ANOPP Modules Called: a list of General Utility Modules called

by the module in this figure.

CDC System Library Subprograms Called: a list of subprograms called by the module

in the figure and which are not part of "

ANOPP but are provided by CDC NOS operating

system libraries.

3.7-23 ,

I

o(.0
-

L J

CY

[-- CO

CY

I
I..-.

o

0o')

N

09 °,-I A

c/_ • 0

f

L _ _O._
• _,_ .H r_

_ O

EXECUTIVE MODULES

X

r_ H
_2

u')

c_o .o o
: 0

.-to9
I::

o

m:
o9 4-,

,a
U_

0

m
Oco

,.-I
,--I

c.)

#:

0

o

,-I

(.)

0

C_

u'l

D
f_

.,.4

ffl

4J

o

f_

.,-I
'T"

E
O

U'I

E

t_

m

a_

0

o
.,-I
£
r_

-,-t

3.7-2_

DYNAMIC STORAGE MANAGEMENT SYSTEM (DSM)

o

,--I X
,-I

0
Z

_ X

i-4
_ X

0 X

rD

E

O

C_

O3

-,..t

4-'

..m

°_
,-r'

I:10
°,-I

3.7-25

EXECUTIVE MODULES

u] ,_ ,--I

< t

v ;_

: 0

@

._o

5.,

Q) 4-1

I::1 0 "l:J

"X

x_ I ,..-4

_'1 I-4

ffl

0

<

4_

,-I

m
¢.2

h
0

C_

r,n

O3

¢.)

U)

4-'

..C
r.)

[-,
ID

.,-4

5-,

C_

(,9

.,4

3.7-26

DYNAMIC STORAGE MANAGEMENT SYSTEM (DSM)

rJ
0

._... r_ o
U'J QJ ,_

r-¢

j , 00 ,._
0

_o

o
0

_1 _:_

i_ .,--i

o

f_l [-,
-s--,

u

o

,-_

o
0

__ ._

_0

I_ ._ 0

r.j _

,--t
,--t

ffl I..-i

u

o

_9

3.7-27

EXECUTIVE MODULES

N

.,-4

u_

N 0
Og.a :_
r_,-4

Z-_ 0

m m
- o

u

n-

u_

°

.,-4

,-{

,-@

o

3.7-28

DYNAMIC STORAGE MANAGEMENT SYSTEM (DSM)

u

E

_s).._i o
1 _ _ _

_E: 0 oq
6")

0 _)
U f_,

L_

E-4 >_

In 4-'

ul

+J

:0

_o

.=
0

rO

Q)
.el

bO
..4

o)

co

_n

: 3.7-29

EXECUTIVE MODULES

_n

c,

c,

ro

_.,4 o
cD ,-4 4.J
m: ou_
50 Lo

o 0)

5.4

4..,

n. _ ¢j

¢n ,-4
C3_

,,.-4

[-, c_

03
¢3 4J

4_

nJ

(D

U

C_

.-'4

-4

_J

,-4

0

3.7-30

DYNAMIC STORAGE MANAGEMENT SYSTEM (DSM)

X

or)

_X

X _

cO
•,4 _D_
•I0 _._
U4_

09

,D

4.J

rd
_Z
o

_Z
(o

G;

u3

(23

.,4

,,.4
,-4

c.) (9

_-3

0

_" _._

0
Z

3.7-31

EXECUTIVE MODULES

m

I

_ _ ,
_ ×E L

50 X

%

5_o_
- _

.--t

_ H

0

<

0

_n

m

0

-,.4

_ m

_ H

4_

O

-,-t

X

F_

3.7-32

3.8 UPDATE

EXECUTIVE MODULES

3.8.1 Overview

The ANOPP UPDATE processing phase is invoked by module XCSP during the Control State-

ment Processing Phase (Section 3.5) when an UPDATE Control Statement (CS) is encountered

in the primary or secondary input stream. The UPDATE processor provides a method of

building the members of a data unit by revising existing members of other data units or by

creating new members. The UPDATE CS provides information about the data unit to he changed

(ZLDU, if applicable), the data unit to be written (NEWU), the source of the UPDATE direc-

tives (S#URCE), and other processing infommation. UPDATE directives may reside on an

existing user data unit/data member (S@URCE = DU(DM) on the UPDATE CS), in card image

format or they may follow the UPDATE CS in the primary input stream (S_URCE = _',on the

UPDATE CS). If the directives follow in the input stream, they are placed on a Uxxx

member (Section 3.4.5) on the EM system scratch unit XSUNIT by module XRT during the

primary edit phase. The UPDATE processor de%er_nines where the directives reside (user

member or Uxxx member) and processes them in two major phases, the editing and reformat-

ting phase and the execution phase.

In the editing and reformatting phase, records are read sequentially from the data

member defined by S_URCE until a directive is complete (a $ encountered). The entire say

of directives is edited, although reformatting ceases when an erTor is encountered. The

steps in editing and reformatting a dlrec_ive a_e as follows:

1. The directive is "cracked" by the XCR module to produce a table which includes

every field comprising the directive preceded by an integer type code.

2. The cracked directive is then checked for syntax. If no syntactical errors

are found, the card image(s) comprising the directive, together with the

cracked directlve table, is written as one record (a "reformatted" directive)

onto the EM scratch unit XSUNIT, data member UPDATS.

3. If the directive is followed by data records (i.e., -ADDR @LDM=_ or -INSERT

FR_M=_), the data records ame copied, in card image format, onto the data

unit XSUNIT, data member UPDATS, followed by a null mecord w_itten to that

membel _.

4. If the directive is the last record level directive in a set of record level

directives, a null record is written following the reformatted record level

directive on data unit XSUNIT, data member UPDATS.

3.8-1

EXECUTIVE MODULES

EM system control is returned to the module XCSP with the EM system logical error

flag, NERR, set to .TRUE. if errors are encountered during this phase.

If no errors are encountered during the editing and reformatting phase, then the

execution of the directives phase is invoked. In this phase, the UPDATE module, XUP,

sequentially accesses the reformatted directives from data unit XSUNIT, data member UPDATS,

and processes them in a single pass performing the functions indicated by each directive.

When either the last directive has been processed or a processing error is encountered,

control is returned to the module, XCSP, with NERR set accordingly, and the control state-

ment processing phase continues.

3.8.2 Control Statement

Purpose: The UPDATE Control Statement (CS) provides a means of building a data unit

by using an existing data unit as a basis for modifications or by adding members from

various sources with no one data unit as a basis or a combination of both. There are two

UPDATE modes, Revise and Create, depending on the presence of a data unit as a basis.

The UPDATE CS, present in the primary or Secondary Input Stream, supplies required

information for the subsequent processing and allows for selection of various options

available to the user. The building of the new data unit is controlled by a set of UPDATE

directives which may either immediately follow the UPDATE CS in the Primary Input Stream

(Secondary Input Stream prohibited) or be contained in card image record format on a data

member.

There are two types of UPDATE directives, member level and record level. Member

level directives reference a data member to be processed and include -C_PY, -_MIT, -ADDR,

and -CHANGE. Record level directives must follow a me_er level -CHANGE directive and

reference a particular record(s) to be processed. Record level directives include

-INSERT, -DELETE, and -QUIT.

The Revise UPDATE mode is invoked when an existing data unit is to provide a basis

for modification. The _LDU parameter on the UPDATE CS specifies the basis data unit.

3.8-2

UPDATE

The -C@PY and -_MIT directives are valid only during Revise mode and they reference data

members on the _LDU data unit. All other directives are also valid during a Revise mode

UPDATE.

The Create UPDATE mode is invoked when there is no existing data unit to provide a

primary basis for modification. The _LDU parameter on the UPDATE CS is omitted. All data

members to be written to the new data unit (with or without modification) will come from

various data units known to the ANOPP run. The -0MIT and -C_PY directives are invalid.

The -ADDR and -CHANGE directives are valid.

No data unit utilized by UPDATE (except the new data unit being built) is altered as

a result of the UPDATE process. The data members residing on the units are sources of

reference only. However the new data unit is always altered as a result of UPDATE. At

the start of UPDATE processing the new data unit is "wiped clean" of any members which

currently reside on the unit (unless the unit has been write-protected via an ARCHIVE CS

in which case an error condition is invoked and UPDATE in inhibited).

Format :

[label] UPDATE [_LDU = dUl_ NEWU : du2, [ALL]

label - (optional) label name

_LDU clause - (optional) the presence of the _LDU clause indicates a Revise mode

UPDATE. The data unit name specified by dUl, will be used as the basis for

UPDATE processing. Member level and record level directives which allow a

default of _LDU data unit or imply the _LDU data unit, will use dUl, as the

required unit. The omission of the @LDU clause indicates a Create mode UPDATE.

Defaults or implications of an _LDU data unit on all directives are invalid in

Create mode.

NEWU clause - du 2 is the name of The data unit to be built during UPDATE processing.

It must be known to Member Manager (see Create and Attach CS) and must not be

3.8-3

EXECUTIVE MODULES

write-protected (see ARCHIVE CS). All members existing on du 2 will be erased

(i.e., du 2 will be wiped clean) as if the du 2 had been created via the CREATE

CS.

ALL - (optional) if present, indicates a full update of the basis data unit (0LDU

parameter) is to be performed. All data members on the 0LDU data unit which are

not processed by a member level directive will be copied to the NEWU data unit.

A member will not be copied by ALL if the member name is the same as any of the

following:

i. The dm name specifying a member on 0LDU in the _LDM clause of the

-ADDR or -CHANGE directive.

2. The ndm name on the -ADD or -CHANGE directive (either explicitly staled

via the NEWM clause or implied by its omission).

3. A dm name on the -C_PY or -_MIT directive.

If ALL is omitted The full update will not be performed for a Revise mode UPDATE.

The ALL field has no meaning on a Create mode UPDATE.

S@URCE clause - the S_URCE clause specifies where the set of UPDATE input directives

will be found. * indicates the directives immediately follow in the Primary

Input STream. The use of * is not valid if The UPDATE CS appears in a Secondary

Input Stream (i.e., processed as a result of a CALL CS). The set of UPDATE

directives ape ter_ninated by an END* CS.

du 3 (dm 3) - specifies the data unit and member containing the directives, dm 3 must

contain card image records with IOA8 format (dm 3 may have been built previously

via a DATA CS).

LIST clause - (optional) if present, The LIST clause specifies The type of printed

output required from The UPDATE processing.

The list following The = is a sequence of letters specifying the sections of

output desired. The list may be a combination of the following:

E - Directive Echo Section

S - Summary Sectlon

C - CHANGE MembePs Section

A - ADDR Members Section

3.8-_,

UPDATE

LABI

An additional Header Section is automatically selected. The printed output for

the various sections is described in Section 3.8.6.

If the LIST clause is omitted only the Header Section is selected.

Examples:

UPDATE NE_J : UI, SOURCE = *, LIST = S $

(directive set)

END* $

UPDATE _LDU = U001, NEWU = U002, ALL, S_URCE : DU5(MI), LIST

UPDATE _LDU = UO02, NEWU = ABC, S_URCE = * S

(directive set)

END:':$

: SEA $

3.8.3 Member Level Directives

3.8.3.1 General Format

The format of a member level directive is shown below:

directivename field [field ..] $

The directivename is -ADDR, -C@PY, -_MIT, or -CHANGE. A blank separates directivename

from the fields which are dependent upon the particular directivename. Fields are sepa-

rated by a delimiter and may be continued just as in the Control Statement format. The

delimiters are the same as those for control statements.

3.8.3.2 -ADDR

Purpose: To add to the NEWU data unit a data member which is found on the _LDU unit.

on a unit other than _LDU. or on card images in the Primary Input Stream. There are two

formats:

Format i:

-ADDR _LDM :*. NEWM : ndm [.F_RMAT : format] [.MNR:n] $

OLDM clause - * indicates the me,Lber to be added is in card images immediately

following the -ADDR directive. It is terminated when another member level

3.8-5

EXECUTIVE MODULES

directive is encountered. If the format specified or implied in the F@RMAT

clause is not CI then a $ must terminate each record and the next record must

start on the next card (i.e., characters following the $ on a card are comment).

The $ is not considered part of the record. If the F_RMAT clause is omitted or

specified as CI, then each record will consist of one card image (IOAS) and a $

is not required for record termination.

NEWM clause - ndm specifies the name of the data member added to the NEWU data unit.

It must not be the name of a member on NEWU as a result of a previous directive.

F@RMAT clause - (optional) indicates the format of the member, ndm.

one of three forms:

i.

2.

Format may be

0 - indicates unfor_natted.

The characters on the card(s) will be interpreted and converted as

types I, RS, RD, CS, CD, L, and a Hollerith si-cing of type A i. The

converted fields will be written To member ndm as unformatted.

nHCl...Cn_ 1 - indicates fixed or variable length format.

The character string (Cl...Cn_ I) describe the format of the records To be

written to ndm. The fields on the cards will be interpreted and converted

as types I, RS, RD, CS, CD, L and Hollerith character string type A i. The

correspondence between The Type field specified on the format and The card

image field is given below.

Control Statements.

format description

code

The card image fields are as described for all

card image

field (S)

number words written

to record

I integer

RS real single

precision

RD real double

precision

CS complex single

precision

CD complex double

precision

I I

RS 1

RD 2

two successive 2

RS fields

two successive 4

RD fields

3.8-6

UPDATE

Each element code is separated by a comma. A multiplier may optionally

precede parentheses enclosing a single element or a group of elements. The

multiplier specifies the number of times the element(s) are to be repeated.

The character * may be used as an indefinite multiplier when preceding the

last element(s) of the format. The * specifies an indefinite repeat of the

element group.

A fixed length format results when the format does not contain the

indefinite multiplier (_). Each record will be of the same length de-

termined by the format. A variable length format results when the format

includes the indefinite multiplier (*). The records are variable length

depending on the number of elements written which may or may not include

the indefinite repeat group in whole or in part.

3. 2HCf - indicates the card images following should not be interpreted and

converted but instead w_itten directly to member ndm, which will have a

card image format.

The formats resulting from 0 or nH--- or 2HCf are identical

to Member Manager (MM) formats (except MM requires a terminating $) and the

sections describing MM should be referenced for further description. If

the F@RMAT clause is omitted, then F_RMAT = 2HCI is assumed.

MNR clause - (optional) indicates the maximum number of records that ndm may contain.

n is an integer specification.

If the clause is omitted, the executive system default for Member Manager is

used (i0,000 currently).

Example I:

-ADDR _LDM = *, NEW_ = MI, MNR : 3 $

RECORD 1 WILL BE THIS CARD

RECORD 2 WILL BE THZS CARD

RECORD 3 WILL BE THIS CARD

3.8-7

EXECUTIVE MODULES

- (next directive)

Result: Member M1 has CI format and contains three records.

Example 2:

-ADDR _LDM = _, NEWM = M2, F@RMAT = 20HI,2RS,A9,KD,CS,L,CD$, MNR = 2 $

1 1.5 2E+01 9HABCDEFGHI 3D-01 1.5 2.0

.TRUE..SD+O0 -.8%1D-06 $

Ii .5 -.696E-II0 9H123456789 lO.SD+01

.696E+29 .32E÷3! .FALSE..919D÷01 .210D+06 $

(next directive)

Result: Member M2 has fixed format (I,2RS,Ag,RD,CS,L,CD) and contains two

records of length 14.

Example 3:

-ADDR _LDM = _, NEWM = M3, F_RMAT = 0 $

.693 $

.70D+01 .898D+20 .TRUE. 3HABC $

I0 20 30 $

- (next directive)

Result: Member M3 is unformatted and can have a maximum of i0,000 records but actually

contains three records as follows:

Record 1 is 1 word lon K (one floating point RS)

Record 2 is 6 words long (two floating point type RD, a logical .TRUE., one

word containing string ABC left justified and blank filled)

Record 3 is 3 words long (three integers type I)

Format 2:

-ADDR _LDM =1_ (din)} ,NEWM=ndm $

_LDM clause - indicates where the member to be added is found, du(dm) specifies the

unit and member name. du may or may not be the name of the unit named as the

_LDU unit on the UPDATE CS. If du is omitted, the unit named as @LDU is assumed.

The new ndm member will be identical to the member named in the S@URCE clause.

dm and ndm may or may not be the same name.

3.8-8

UPDATE

NEWM clause - (optional) ndm is the name of the data member added to the NEWU. If

the clause is omitted the name dm specified in the @LDM clause is used for ndm.

Examples:

-ADDR _LDM = UNIT1 (M_IA), NEWM=MI $

-ADDR #LDM = MEM5, NE_4=NZ $

-ADDR _LDM = MS $

3.8.3.3 -C@PY

_: To copy to the NEWU data unit one or several data members on the @LDU data

unit.

Format:

-C_PY dm [,dm ...] $

dm - name of the data member residing on _LDU to be copied to NEWU. dm must not be

the name of a member already w_it_en to NEWU as a result of a previous member

level directive.

Examples:

-C_PY ABC, MI, MEMB, D1 $

-C_PY XYZ $

3.8.3.4 -@MIT

Purpose: To omit the copying of one or several data members on the ¢LDU data unit to

the NEWU data unit during processing of the ALL UPDATE CS option.

Format:

-_MIT dm [,dm ...] $

dm - name of the data member residing on @LDU to be omitted as a copy possibility

during ALL processing.

Examples:

-_MIT ABC, MEM1, MEM2, MEM5 $

-_MIT MEMIO $

3.8-9

3.8.3.5 -CHANGE

EXECUTIVE MODULES

Purpose: To change a data member on either the 0LDU data unit or another data unit

via record level directives which follow the -CHANGE directive and to write it on the NEWU

data unit with rename capability.

Format:

-CHANGE _LDM = { dU(dmdm) } [,NE%_4=ndm] [,MNR=n] $

0LDM clause - specifies the data member to be changed.

du(dm) - specifies the data member to be changed. Data unit du may be the unit

named as _LDU on the UPDATE CS. dm with du omitted specifies the data member

which resides on the 0LDU data unit to be changed. In either case, the data

member, dm, is referenced on the record level directives as 0LDM.

NEWM clause - (optional) ndm is the name to be given to the member written to NEWU.

If the clause is omitted then the name dm specified in the _LDM clause is used.

MNR clause - (optional) specifies the maximum number of records the member ndm will

contain (regardless of the number of records contained on the _LDM member). If

omitted, the MNR used in creating _LDM will be used with a possible increment as

explained below.

NREC 0 = current number records on _LDM

MNR 0 = MNR used when _LDM was created

MNRnd m = MNR to be used in creatin E ndm.

IF (NREC0<__ .95 _ MNR 0)

THEN MNRnd m = MNR 0

ELSE MNRnd m = i.I * MNR 0

Usage: Record level directives immediately follow the -CHANGE directive and direct

the altering or changing of the @LDM member. Processin E of the -CHANGE terminates when

either another member level dimective or the end of the input set of directives to the

UPDATE CS is encountered.

3.8-10

Examples :

-CHANGE _LDM=MI, NEW_'=M2

UPDATE

(record level directives)

-(Member level directive)

-CHANGE @LDM=UNI(I!EM),MNR=2000

(record level directive)

3.8._ Record Level Directives

3.B.4.1 General Description

The format of a record level directive is shown below:

directivename field [field ,..] $

The direetivename is -INSERT, -DELETE, or -QUIT. A blank separates the directivename from

the fields which are dependent upon the particular directivename. Fields are separated by

a delimiter and may be continued just as in the Control Statement format. Delimiters are

the same as for the Control Statement Format.

Throughout record level directives operands i and j are used as pointers to relative

record positions in the old member. Record level directives must be processed sequenti-

ally with respect to i and j. This is necessary because the new member is created in one

pass. So, a directive referencing records 5 through 8 (i I through jl) must be called

before a directive referencing records 9 through i0 (i 2 through j2) and never vice versa.

The i value (if present) in any directive must be greater than the i (and j if present)

specified in the preceding directive as noted in each of the following directives.

3.8-11

EXECUTIVE MODULES

This is accomplished by an old member reference pointer, P, which is initialized to

zero at the beginning of the CHANGE processing. The i value specified on a record level

directive must be greater than P.

following three values:

i.

2.

3.

Upon completion of the directive P assumes one of the

the j value (if present)

the i value (j not present, i present)

unchanged (i and j not present)

The next record level directive must have an i value (if present) greater than the

new value of P. The i parameter may be omitted on the -INSERT and -QUIT directives as

described in the following sections.

The -INSERT, -DELETE, and -QUIT record level directives are processed under control

of the preceding -CHANGE member level directive. The -CHANGE directive is in control

until another member level directive or the end of the input SOURCE is encountered. If

a -QUIT is encountered, processing of the member being CHANGEd is terminated according to

the -QUIT specifications. If a -QUIT is not present and the -CHANGE is terminated by

encountering a member level directive or the end of the input stream, then the member

being CHANGEd is completed as follows. Any records remaining on the old member following

the reference pointer P will be copied to the new member. (i.e., records P+I through the

last record on @LDM are copied to the new member). The new member is then closed°

3.8.4.2 -INSERT

Purpose: To insert one or more records into a data member being changed.

Format:

i - the record after which the specified records will be inserted, i must be greater

than the old member record pointer (P). Records P+I through and including

record i will be copied to the new member followed by the inserted records.

The i may be omitted in which case the records are inserted immediately

onto the new member and P remains unchanged. Thus records may be inserted at

3.8-12

UPDATE

the beginning of the member (when P=0) if -INSERT with i omitted is the first

directive following the CHANGE.

FR@M clause - the FROM clause specifies the source of the records to be inserted.

FROM=* indicates the records to be inserted immediately following the INSERT

directive. FR_M=_LDM indicates the member named as 0LDM on the CHANGE directive

contains the records to be inserted. The entire FR@M clause may be omitted, in

which case FROM=* is assumed. The FR@M=* clause is valid in the Primary or

Secondary Input Stream.

If the format of @LDM is unformatted, fixed, or variable then a $ must terminate

each input record and the next record must begin on a separate card image.

(m,n) - specifies which records on the _LDM are to be inserted. It is ignored if

FR@M=* is present. Records m through n will be inserted (n>__ m>__l), n may be

omitted and, if so, m = n is assumed. The REC@RDS clause may be omitted and if

so, all of the records on _LDM will be inserted. Records which follow immedi-

ately in the input stream are card images. If the format of CLDM is card image

(2HCI used when created via UPDATE ADDR) then each card image is copied directly

to ndm as a record.

After processing an -INSERT, the record pointer in the _LD member points to

record i if i is present. If i is not present then the old member record

pointer is unchanged.

Example I:

Assume N1 is a member on the _LDU data unit and contains i000 card images, perhaps

built via a DATA CS. Then to insert two card images following the sixth record on

NI the following is required:

-CHANGE _LDM = N1 $

-INSERT 6 $

(card image)

(card image)

-(next member level directive)

- 3.8-13

EXECUTIVE MODULES

Example 2:

The following directive copies records 1 through 5 from the old member and inserts

them after record 6 of the old member.

-INSERT 6, FR_M:_LDM (1,5) $

Example 3:

Assume the @LDU data unit is UNI and contains member MEM which consists of 2000

records. MEM was created with a maximum record number (MNR) of 2010 records. The

new member on NEWU is to be named MEMNEW. To copy records 5 through i0 from MEM to

the beginning of The new member and copy (without altering) the other records in MEM,

the following sequence may be used.

-CHANGE @LDM = MEM, NEWM = MEMNEW, $

-INSERT FROM = 0LDM (5,10) $

-(next member level directive)

Example 4:

Assume the name as Example 3 except records 5 through 20 are to be inserted. This

would result in 2016 records on MEMNEW but the automatic expansion algorithm for

MNR is sufficient therefore the following is used:

-CHANGE CLDM = MEM, NEWM = MEMNEW $

-INSERT FROM = _LDM (5,20) $

-(next member level directive)

Example 5:

Assume the same as Example 3 except records 5 th1_ough 205 are to be inserted.

The automatic expansion algc_ithm will result in 2100 which is insufficient for

the MEMNEW of 2201 records. Therefore MNR must be specified.

-CHANGE @LDM = MEM, NEWM = MEMNEW, MNR = 2500 $

3.8-1_

UPDATE

3.8.4.3 -DELETE

Purpose:

Format:

To delete records on the member being changed.

-DELETEi s

i,j - i and j specify the range of records to be deleted (P-__ i____ j) where P is

the old member record pointer. Records P+I thru i-i (p<i) on _LDM are copied

to the new member. The records i thru j are effectively deleted by setting P to

the value of j.

j may be omitted which results in the one record i being deleted (same

asi= j).

Example:

-CHANGE _LDM = JET $ At initialization record pointer P set

to zero. (P=O)

-DELETE 4,6 $

-INSERT FR@M=ZLDM (12,13) $

-DELETE 9,10

Records 1,2,3 copied to new member; 4,5,6

skipped. (P=6)

Records 12 and 13 are copied from old member

onto new member after current position of

P which is 6. (P unchanged)

Records 7 and 8 are copied from old member

to new member; 9,10 skipped. (P=I0)

Old Member

Rec i

Rec 2

Rec 3

Rec 4

Rec 5

Rec 6

Rec 7

Rec 8

Rec 9

Rec i0

Rec ii

Rec 12

Rec 13

Rec 14

New Member

Rec i

Rec 2

Rec 3

Rec 12

Rec 13

Rec 7

Rec 8

3.8-15

3.8.4.4 -QUIT

EXECUTIVE MODULES

Purpose: To terminate processing of the member being altered via the -CHANGE direc-

tive after a specified record.

Format:

i - (optional) specifies the record with which to terminate processing. All records

from the current position of the record pointer plus one through record i are

copied onto the new member. Record i will be the last record copied to the new

member.

If i is omitted processing on the new member is terminated immediately.

The -QUIT directive, if present, must be the last record level directive under

the control of the -CHANGE directive.

3.8.5 Format Summary

The following is a summary list of valid formats for the UPDATE CS and the UPDATE

_mber level and Record level directives:

UPDATE CS

F 0=
Member Level Directives

-ADDR @LDM:*, NEWM:ndn

Jdu(dm)_ [,NEWM:ndm]-ADDR @LDM=_dm J

-COPY dm [,dm ...] $

-@MIT dm Edm ...35

NEWU = du2, [ALL,] SOURCE ={du3(dm3)}[LIST= x Ix .._])

2HCI$

$

,MNR:n] $

3.8-16

Record Level Directives

DELETE i [,g] S

-Q IT [i] s

3.8.6 UPDATE Output Description

UPDATE

3.8.6.1 HEADER SECTION

UPDATE PROCESSING BEGINNING WITH THE FOLLOWING PARAMETERS

I CREATE
REVISE

MODE New Data Unit : NAME (A8) Old Data Unit = NAME (AS)

SOURCE OF UPDATED DIRECTIVES IS

I PRIMARY INPUT STREAM LIST = S E A CDATA UNIT NAME (AS), DATA MEMBER NAME (AS)

3.8.6.2 DIILECTIVE ECHO SECTION

(all card image directives on S@URCE data member or * are listed in 10AS format)

EDITED CARD IMAGE

NOTE ~ entire Directive Echo is printed prior to any processing.

8.8-17

3.8.6.3 SUMMARYSECTION

MEMBEP NUMBEROF
NAME RECORDS

E_CUTIVEMODULES

UPDATEPROCESSINGSUMMARY

NEWDATAUNIT = NAME(A8)

RECORDTYPE MAXIMUM
LENGTH

Name(A8) (I3) CI (I14)

TOTALOF(I5) MEMBERSONNEWDATAUNIT

RESULT

-ADDR
-CHANGE
-C_PY
-ALL

OF

3.8.6.4 CHANGEMEMBERSECTION

DATAUNIT = NAME(A8) DATAMEMBER

RECORD

: NAME(A8) FORMAT

card imagerecord (10A8)if CI

OR

octal record (5¢23)multiple

= I FORMATIMAGE1UNFORMATTED

n

(I7) one line of (10AS) or multiple lines of 5¢23.

NOTE: The member written to the new unit is listed upon completion of the CHANGE Directive.

• 3.8-18

3.8.6.5 ADDR MEMBER SECTION

DATA UNIT = NAME (AS)

RECORD

UPDATE

DATA MEMBER = NAME (A8) FORMAT

card image record (10AS) if CI

OR

octal record (5#23) multiple print lines

I FORMAT IMAGE 1= UNFORMATTED

n

(17) one line (IOA8) or multiple lines (5_23)

NOTE: The member is listed upon completion of the ADDR Directive.

3.8-1g

EXECUTIVEMODULES

3.8.7 Error Philosophy

The set of UPDATE member level directives, contained either on the SOURCE data member

or in the Primary Input Stream, is executed sequentially beginning with the first direc-

tive. If no error occurs in the sequential processing, UPDATE terminates normally when

execution of the last member level directive in the directive set is complete. However,

if an error is encountered while processing any member level directive or any record level

directive under the control of a member level directive (i.e., -CHANGE), then further

UPDATE processing is inhibited and UPDATE is terminated.

Upon UPDATE error termination the NEWU unit contains all members written as a result

of the previous member level directive which executed successfully. If the error occurred

during execution of a record level directive and the member has been partially _Titten as

a result of immediately preceding successful record level directives then the partially

complete member is considered complete and will be present on NEWU. A partially complete

member is the result of the -CHANGE directive being terminated by a record level directive

error. The contents of the NEWU unit will be reflected in the summary section which is

printed upon error termination if selected via the LIST field on the UPDATE CS.

Errors may be detected in UPDATE processing during one of Two phases, the edit phase

or the execution phase.

During the edit phase, the set of UPDATE member level or record level directives

contained either on the S_URCE data member or in the Primary Input Stream is edited for

syntactical errors. The directives are read and checked sequentially, beginning with the

first directive in the set. If a directive is syntactically correct, it is then stored in

an executable format, known internally to UPDATE. If no error is detected on any UPDATE

directive during the edit phase, the entire reformatted set of directives will be input to

the execution phase.

If an error is detected on an UPDATE directive during the edit phase, the remainder

of the directives in the set will be checked for syntax, but will not be reformatted for

execution. The directive(s) in error will be printed, and UPDATE will terminate following

3.8-20

UPDATE

the edit phase if any error in syntax is present in the set of directives. The following

errors include conditions which would result in an edit phase error and inhibition of

execution processing.

i. Required field missing - for example, the 0LDM clause is not present on an

-ADDR directive.

2. Invalid field type - for example, on the -ADDR directive The F_RMAT clause is

present and contains F@RMAT = 10AS.

3. Incomplete directive - for example, -0MIT $ which contains no dm fields.

This is similar to required field missing.

4. Invalid directive name - for example, a mispunch resulted in the directive

-C_PI DM $.

During the execution phase, the reformatted set of syntactically correct UPDATE

directives are executed sequentially beginning with the first directive. If no error

occurs in the sequential processing, UPDATE terminates normally when execution of The

member level direczive in the directive set is complete. However, if an error is en-

countered while processing any member level directive or any record level directive under

the control of a member level directive (i.e., -CHANGE) then further UPDATE processing is

inhibited and UPDATE is terminated.

Upon UPDATE error termination the NEWU unit contains all members written as a result

of the previous member level directive which executed successfully. If the error occurred

during execution of a record level directive and the member has been partially w_itten as

a result of immediately preceding successful record level directives, then the partially

complete member is considered complete and will be present on NEWU. A partially complete

member is the result of The -CHANGE directive being terminated by a record level directive

error. _e contents of the NEWU unit will be reflected in the summary section which is

printed upon error termination if selected via the LIST field on the UPDATE CS.

The Types of errors which may cause UPDATE error temmlnation are varied. Some error

types are specific to a particular directive being executed while othe_ error types are

general and apply to all directives. Directive errors are implied by _he requirements for

each particular directive. The general errors include duplicate member attempted on

3.8-21

EXECUTIVE MODULES

NEWU. This error is emphasized and provides the basis for handling conflicting direc-

tives. The general conflict rule for executing successfully The set of UPDATE directive

is as follows: "there shall not be an attempt to write on the NEWU unit a data member

which has the same name as a data member previously written on the NEWU." There is no

restriction as to how many times a particular du(dm) may be used on the various directives

as long as the resulting member to be written on the NEWU is not the name of a member

already residing on the NEWU. UPDATE will not attempt to overwrite members on NEWU. Since

NEWU either contains no me_%bers upon entry to the UPDATE CS processing phase or is "wiped

clean" before UPDATE directive processing begins, the conflict rule is violated only by an

incompatible set of directives and not because of the contents of NEWU upon entry to

UPDATE processing. The following directive sequence is compatible since the -@MIT directive

does not result in a member being written to NEWU. The -_MIT directive has no meaning,

however since the -ADDR directive would eliminate the possibility of DM2 (if present on

the designated _LDU) being wncitten to the NEWU during ALL processing.

-_MIT DM2 $

-ADDR S@URCE = *, NEWM = DM2 $

Also compatible is the following sequence:

-_MIT DMI $

-C_PY DMI, DM3 $

-_MIT DM3 $

-ADDR S_URCE = DM6, NEWM : DM7 $

-C_PY DM6 $

-CHANGE @LDM = DM6, NEWM = DM8 $

The following sequence results in a conflict error:

-CHANGE @LDM = DM3, NEWM = DMI0

-C_PY DMIO $

3.8-22

UPDATE

3.8.8 Auxiliary Module

An auxiliary module performs a function common to UPDATE modules and is available for

use only by UPDATE modules.

3.8.8.1 UPDATE Error Message Writer (XUPERR)

Subroutine XUPERR (NM, CNAME, VARI, VAR2) processes fatal and non-fatal errors for

the UPDATE modules. NM, the integer number of the error message to be printed is negative

if the error is fatal and positive if the error is non-fatal. XUPERR prints the informa-

tive error message indicated by the absolute value of NM w_th the name of the calling

module (CNAME) and specific value(s) involved in the error condition (VARIj VAR2). If the

errol _ is fatal, ANOPP is aborted by a call to XEXIT.

3.8.9 Hierarchy Charts

A hierarchy chart is a graphical representation of the logical relationship between

modules. Figures i through 6 are the hierarchy charts for UPDATE.

In general, only UPDATE modules appear as a block entity in the charts and all UPDATE

modules appear at least once. A module which is not part of UPDATE but is called by an

UPDATE module is not shown as a block entity but is listed at the bottom of the chart.

The module will be an ANOPP executive module which is part of the Data Base Management

System (DBM), the Dynamic Storage Management System (DSM), or the General Utilities, is of

a service or utility nature, and may be called many times by various UPDATE modules.

Symbols and headings used in the hierarchy charts are given below:

NAME NAME - module name

purpose purpose - brief description

indicates lower module is called by the

higher module.

in upper right corner of module block indicates

module is expanded as a separate hierarchy.

3.8-23

EXECUTIVE MODULES

ANOPP Modules Called: a list of DBM, DSM, and General Utility

modules called by the modules in this figure.

CDC System Library Subprograms Called: list of subprograms called by the module

in the figure and which are not part of

ANOPP but are provided by CDC NOS operating

system libraries.

3.8-2q_

O21G/_A_ PAGE I_

OF POOR QUALITy

0 o_
_ O_

X P_ i

C) _ r.._O

L) U <

XP-_ I

_ OD-1

D

E
E o

XCOCO

US _._

_ 0 _

%

UP

l

UPDATE

._q-_
X _ E
_., _ ,'_

X

-

E_

_I .,-I

-- _ 4J 1J

.,."t
Cl

>

I
XE_

3.8-25

_-1 _ 0

_o

8

r_ _ H _ _ _

o _

.ia

o

x

c_

EXECUTIVEMODULES

Inu_
C9 In r..9

rO U<
i:_ O '-r"
:D _rO
X _-, I

Z Z

D_J O
X<[-_

In
In E-,

:Z cD i_

r._)O u'j
0-, _ _z;
_ _., I--_
X t

E.-_ In [-,
_ 0 [-,_
(3 U ,-..l
I_ 0 l._l

X I_ I

In

Cy o [-_

_ OID
_ _0'
X 0-, I

0

rj

f_

X in

[-,
0
[-_

0

£9

_ :>_

X 0
cD

0

C9

X 0

0

0

O_ 0

0

0

O_ _ In

__).,_ .-_

O'_

0
c.)

0

[_9 m

D C.
X 0

_3

0
_[--.

X 0

0

X 0
0

X

Cg_

_mzX

m
0

In

m

0

f_
O
Z
<

_XX

_u
X

_0

r_
..c

o

_J

o
.,-4

(_9

(J

x

°
04

(D

t_

3.8-26

UPDATE

[.,J o t_ 0

¢1
,-I
,-I

,-I

0

0

X

X

C
I-'4
X

X

,-t
.'-t

(..)

0

ul

%

%

.,-I

.iJ

g21
0

(.)

.x:
o

Ill
o,-t

c_

X

o

NI
.,-t

3.8-27

EXECUTIVEMODULES

x :__oo_._o

I ,-4
w

u

_o

_-4 00

o
_ U H

xD_
;4

"4

O

"4
m
"0

0

Z
H
,--1

X

2
X

.2

.2

r_

_C
(3

o
U

X

=;

_D

3.8-28

co

Z X P-l :>

co .i-,,_: .iJ

.,_

u?

0

X c_ I

bo
n_

o OH

ZC) r-Ll•
X

nD
W

co X

-- _Kg
X ul I

x_

X o,] J

X

°,-I

UPDATE

I I.n
f.q

l:zlX ,-_

Xm[-'

i

o

-,-I

P_

{0

b_

X _
°,-t

M

U OH
Pa,_

_Pa _
X "_

°,-I

I-q

,'-4

0-_ Icz__ X
O

c.3

u
f_
t_

o
.,-I

c_

Z3
X

bO

3.8-29

EXECUTIVE MODULES

X W 0
P., _ E--,

0

r._Z

_-,'U

X_: 0

,_

_'5".

_X

0

4.-'

1-'

.,4

_Z

X
_U

X

UD

.,4

:3.8-30

3.9 GENERAL UTILITIES

EXECUTIVE MODULES

3.9.1 Overview

General Utilities are general purpose subprograms available to all executive system

modules. Some resulted during executive system development from the recognition of

functions common to several modules. Others are required to replace CDC Fortran intrinsic

functions which are NON-ANSI. Most of these utilities are available for use by functional

modules. A few subprograms, classed as utilities but not available to the functional

modules, are specific to executive system philosophy and design criteria and do not

provide the functional module with increased capability.

3.9.2 Reference List

3.9,2.1 ALPHA

Subprogram Type: Logical Function

Calling Sequence: ALPHA(CHAR)

_: Return a function value of .TRUE. if input character, CHAR, is alphabetic.

Otherwise, return a function value of .FALSE.

3.9.2.2 DIGIT

Subprosram Type: Logical Function

Callin$ Seguence: DIGIT(CHAR)

Purpose: Return a function value of .TRUE. if the input character, CHAR, is alpha-

betic. Otherwise, return a function value of .FALSE.

3.9.2.3 DVALUE

Subpro_am Type: Double Precision Function

Callin_ Sequence: DVALUE(RS)

Purpose: Enable the use of any mode variable, RS, as if it were double precision

with no conversion.

_,3.9-1

EXECUTIVEMODULES

3.9.2._ 1AND

Subprogram Type: Integer Function

Calling Sequence: IAND(I,J)

Purpose: Perform logical product of the two input words I and J.

3.9.2.5 ICD

Subprogram Type: Integer Function

Callin$ Sequence: ICD(1)

Purpose: Return the integer value which corresponds to the input character I, a

valid numeric character (AI) in the range 0-9.

3.9.2.6 ICI

Subpro6ram Type: Integer Function

Callin_ Sequence: ICI(I)

Purpose: Return the numeric character (AI) which corresponds to the input variable

I, a valid integer in the range 0-9.

3.9.2.7 ICOMPL

Subprogram Type: Integer Function

Callin6 Sequence: ICOMPL(I)

Purpose: Return the complement of the input variable I.

3.9.2.8 IDATE

Subprogram Type: Subroutine

Callin_ Sequence: CALL IDATE(D)

P_pose: In the output variable D, return the current date in the A8 format MM/DD/YY.

3.9-2

GENERAL UTILITIES

3.9.2.9 ILOC

Subprogram Type: Integer Function

Calling Sequence: ILOC(1)

Purpose: Return the integer index relative to /XANOPP/, the dimensional array to

which all Dynamic Storage addresses are indexed, of input variable I.

3.9.2.10 ILSHFT

Subprogram Type: Integer Function

Callin$ Sequence: ILSHFT(I,J)

Purpose: Left shift with zero fill the contents of the input word ! by J bits.

must have a value in the range O-number of bits per word.

3.9.2.11 IMASK

Subprogram Type: Integer Function

Calling Sequence: IMASK(I)

Purpose: Form a mask of I high-order bits.

number of bits per word.

I must have a value in the range O-

3.9.2.12 fOR

Subprogram Type: Integer Function

Callin_ Sequenc£: IOR(I,J)

Purpose: Perform a logical sum of the two input words I and J.

8.9.2.18 IRSHFT

Subprogram Type: Integer Function

Calling Sequence: IRSHFT(I,J)

_: Right shift with zero fill the contents of the input word I by J bits.

must have a value in the range O-number of bits per word.

,3.9-3

3.9.2.14 ISHIFT

EXECUTIVE _MODULES

Subprogram Type: Integer Function

Calling Sequence: ISHIFT(I,J)

Purpose: Perform a left circular shift (J.GT.O) or right, end-off, sign extend shift

(J.LT.0) of the input word I by J bits. The absolute value of J must be less than or

equal to the number of bits per word.

3.9.2.15 ITIME

Subprogram Type: Subroutine

Calling Sequence: CALL ITIME(T)

_: In the output variable T, return the time of day in the A8 format hh.mm.ss.

3.9.2.16 IVALUE

Subprogram Type: Integer Function

Falling Sequense: IVALUE(I)

Purpose: Enable the use of any mode word, I, as if it Were an integer with no

conversion.

3.9.2.17 IXOR

Subprogram Typ.e: Integer Function

Calling Sequence: IXOR(I,J)

purpose: Perform an exclusive OR of two input words I and J.

3.9.2.18 MEMNUM

Subprogram Type: Integer Function

Callin8 Sequence: MEMNUM(IN)

Purpose: Convert the three numeric characters in the input word IN to an integer

value in the range 0-999. IN is expected to be in the form Axxx (A_) where A is an

alphabetic character and xxx are numeric characters in the Pange 001-999.

3.9-_

GENERAL UTILITIES

3.9.2.19 NUMTYP

Subprogram Type: Integer Function

Callin$ Se@uence: NUMTYP(NAME)

Purpose: Return the integer type code corresponding to the input alpha type code for

an ANOPP data type. For a full description of ANOPP Data Types, see the NDTCL array in

common block /XCVT/.

3.9.2.20 NWDTYP

Subpro$ram T[pe: Integer Function

Callin$ Sequence: NWDTYP(ITYPE)

Purpose: Return the number of words required for an ANOPP data type given the

integer type code. For a full description of ANOPP Data Types, see the NDTCL array in

common block /XCVT/.

3.9.2.21 RVALUE

Subprogram Type: Real Function

Calling Sequence: RVALUE(R)

Purpose: Enable use of any mode word, R, as single precision withcut conversion.

3.9.2.22 XASKP

Subprogram Type: Subroutine

Calling Sequence: CALL XASKP(PNAME,ITYPE)

Purpose: Determine if the input variable PNAME, (A8), is a current User Parameter,

and, if it is, return the integer type code of the ANOPP data type in the output variable

ITYPE. If PNAME is not a current User Parameter, a zero is returned in ITYPE. A User

Parameter is a numerical, logical, or character string value established in the control

statement stream by a PARAM CS or in a functional module with XPUTP. This value is main-

tained throughout ANOPP in the User Parameter Table (UPT) and User String Table (UST) and

may be changed or retrieved.

3.9-5

3.9.2.23 XBSRIN

EXECUTIVE MODULES

Subprogram Type: Subroutine

Callin$ Sequence: CALL XBSRIN(JXX,JX,NEL,INDEX,IFND,IERR)

Purpose: Performs a binary search for integer Jxx in array Jx.

3.9.2.24 XBSRRD

Subprogram _T pe'. Subroutine

Callin_ Sequence: CALL XBSRRD(DXX,DX,NEL,INDEX,IFND,IERR)

_: Performs a binary search for real double DXX in array DX.

3.9.2.25 XBSRRS

Subprogram Type: Subroutine

Callin$ Sequence: CALL XBSRRS(RXX,RX,NEL,INDEX,IFND,IERR)

Purpose: Performs a binary search for real single RXX in array RX.

3.9.2.26 XCR

Subprogram Type : Subroutine

Callin_ Sequence: CALL XCR(BIN,NC,OUTBUF,LAVAIL,LUSED,ICONT,NBAD,IERR,NF)

Purpose: XCR is the executive crack module which identifies ANOPP Data Types on a

card image and converts these fields as required to numerical representations. The

converted fields are represented in table forT, via the OUTBUF array. There is one entry

in OUTBUF per field encountered except for blanks and commas which are recognized as

delimiters but not entered into the table. The table entries are variable length. The

first word of each entry contains the integer type code of the ANOPP data type that

follows. The value length is implied by the type code. Fields recognized by XCR for

output are Integer, Real Single Precision, Real Double Precision, Hollerith String or

Alpha, Logical Operator, Name, Type A Delimiter, and Unrecognizable. The integer type

codes and the corresponding value lengths ame found in the ANOPP Data Types Table (array

NDTCL in common block /XCVT/). The fields as they appear on a card image along with the

output integer type codes and value lengths required are shown in Table 1.

3.9-6

ANOPP DATA

TYPE

INTEGER

REAL

SINGLE

PRECISION

REAL

DOUBLE

PRECISION

HOLLERITH

STRING

LOGICAL

ALGEBRAIC

OPERATOR

LOGICAL
OPERATOR

NAME

TYPE A

D_IMITER

UNRECOGNIZABLE

GENERAL UTILITIES

INTEGER

TYPE CODE

I0

20+N

-N

CARD IMAGE

FORM

NNNN...N

OPTIONAL + -

.LE. 18 DIGITS

,LE, (2"'31)-I

N,

N.NN

N,NN+N N.NN-N

N.NNEN

NEN

NE*N NE-N

.LE. 24 DIGITS

.GE. 10"*-293

.LE. I0"*+322

OTIONAL + -

N.NNDN

N.NND÷N N.NND-N

NDN

ND+N ND-N

OPTIONAL + -

.GE. 10'*-293

.LE. 10"*+322

NHXXX...X

N .LE. 132

.TRUE. •FALSE•

.EQ. •LE. .LT.

.NE. .GT. .GE.

• LE 8 ALPHANUMERIC

CHARACTERS FIRST

IS ALPHA

():I*

NONE OF THE ABOVE

OR EXCEED RANGE

N:NUMBER CHARACTERS

IN FIELD

OUTBUF

VALUE FORM

BINARY

INTEGER

BINARY

FLOATING

POINT

BINARY

FLOATING

POINT

A8

FORTRAN

GENERATED

INTEGER

AS

A4

A8

A1

A8

OUTBUF VALUE
WORD LENGTH

(N+7)/*

(N+7)/8

Table I. Card Images of ANOPP Data Types Recognized by Executive Crack Module XCR.

• 3.9-7

EXECUTIVE MODULES

Continuation calls to XCR may be used to process multiple card images as if they were

one contiguous image. In such continuation calls, Hollerith string fields may be continu-

ed on the subsequent card image, however, other fields may not be continued.

3.9.2.27 XCRWC

Subprogram Type: Subroutine

Calling Sequence: CALL XCRWC(BIN,NC,OUTBUF,LAVAIL,LUSED,ICONT,LCP,IERR,NF)

_: XCRWC is the executive crack module which identifies fields or multiple

card images with variable number of columns and cracks those card images without con-

verting fields. XCRWC builds an output table, OUTBUF, of these fields. There is one

entry for each field encountered except for blanks and commas which are recognized as

delimiters but not entered into the Table. The table entries are variable length. _ne

first word of each entry contains the integer type code of the ANOPP data type that

follows. The value length is implied by the type code. Fields recognized by XCRWC are

Hollerith String, Type A Delimiter, and Unrecognizable. The integer type codes and the

corresponding value lengths are found in the ANOPP Data Type Table (array NDTCL in common

block /XCVT/). The fields as they appear on a card image along with the output integer

type codes and value length required are shown in Table 2. Continuation calls to XCRWC

may be used to process multiple card images as if they were one contiguous image. In such

continuation calls, Hollerith string fields may be continued on the subsequent card image,

however, other fields may not be continued.

3.9.2.28 XEXIT

Subprogram Type: Subroutine

Calling Sequence: CALL XEXIT

_: Abnormally ter_Rinates ANOPP when a fatal error has occurred and performs a

trace back from XEXIT to XM. This utility is not available for use by the functional

module.

• 3.9-8

GENERAL UTILITIES

ANOPP DATA TYPE

Hollerith String

Type A
Delimiter

Unrecognizable

INTEGER

TYPE CODE

-N

10

20+N

CARD IMAGE FORM

NHxxxx...xx

N. LE. 132

()=I *

None of the above

or exceed range

N = number

characters in fiel(

OUTBUF

VALUE FORM

A8

A1

A8

OUTBUF VALUE

WORD LENGTH

(N+7)/8

(N+7)/8

Table 2. Card Images of ANOPP Data Types Recognized by the
Executive Crack Module (XCRWC).

3.9-9

EXECUTIVE MODULES

3.9.2.29 XFAN

Subprogram Type: Subroutine

Callin_ Se_uenc,e: CALL XFAN(RNAME,ANAME)

Purpose: XFAN returns ANAME (AS) the alternate name for RNAME (A8) retrieved from

the Alternate Names Table (ANT) or RNAME if the desired entry is not in the ANT. Alter-

nate names are established in the control statement stream via the EXECUTE CS. This set

of alternate names, maintained in the ANT, is available only during the execution of the

functional module.

3.9.2.30 XFETCH

Subprosram Type: Subroutine

Calling Sequence: CALL XFETCH(NAME,VALUE)

Purpose: Fetch the value of the Executive System Parameter specified by NAME (A8).

Executive System Parameters currently available for fetching are:

Valid Name Residence Type Description

IWR /XCVT/ integer w-rite unit for all FORTRAN w-rite

requests to printer. Used by

system and functional modules.

3.9.2.31 XFMTQ

Subprogram T_pe: Subroutine

Calling Sequence: CALL XFMTQ(NAME,ITYP)

Purpose: Returns in ITYP the format type of the member specified by NAME. NAME is

a three word array where NAME(l) is the Data Unit name (AS), NAME(2) is the Data Member

name (AS), and NAME(3) is to be left unaltemed as it is used by Member Manager. Valid

values of ITYP are:

CI - card image format

F - fixed format

V - variable format

U - unformatted

3.9-10

3.9.2.32 XGETP

GENERAL UTILITIES

Subprogram Type: Subroutine

Calling Sequence: CALL XGETP(PNAME,ITYPE,VALUE)

_: Retrieves the value of the User Parameter PNAME (A8) having integer type

code ITYPE from the User Parameter Table (UPT) and User String Table (UST). It is assumed

that the user has verified that PNAME is in fact an entry in the UPT. A User Parameter is

a numerical, logical, or character string value established in the control statement

stream by a param CS or in a functional module with XPUTP. This value is maintained

throughout ANOPP in the UPT and UST and may be retrieved or changed.

3.9.2.33 XINC

Subprogram Type: Logical Function

Calling Sequence: XINC(IARRAY,RARRAY,DARRAY,IFC)

Purpose: Determines if the input array (IARRAY,RARRAY, or DARRAY), assumed to be in

monotonic sequence, is increasing. The array used is determined by the integer type code

specified by IFC. Expected type codes are: 1-Integer, 2-Real Single Precision, or

3-Real Double Precision.

3.9.2.34 XMOVE

Subprogram Type: Subroutine

Ca llin_ Sequence: CALL XMOVE(FROM,TO,NUM)

_: Moves NUM entries from sending array FROM to the corresponding position in

receiving array TO.

3.9.2.35 XMPRT

SuBprogram Type: Subroutine

Calling Sequence: CALL XMPRT(NAME)

_: Prints the Data Member specified by NAME, a three word array where NAME(I)

is the Data Unit name (A8), NAME(2) is the Data Member name (A8), and NAME(3) is to be

left unaltered as it is used by Member Manager.

3.9-11

EXECUTIVE MODULES

3.9.2.36 XPAGE

Subprogram Type: Subroutine

Callin$ Sequence: CALL XPAGE

Purpose: Initializes for printed output a new page with the standard ANOPP header

information. The five line ANOPP header follows:

Line 1 - MM/DD/YY ANOPP LEVEL NI/N2/N3 PAGE N

Line 2 - Title (16A8)

Line 3 - Subtitle (16A8)

Line 4 - Label (16A8)

Line 5 - blanks

where NI, N2, N3 are 1 or 2 digit numbers and N is up to a 6 digit integer.

3.9.2.37 XPK

Subprogram Type: Subroutine

Calling Sequence: CALL XPK(IN,NC,IOUT)

Purpose: Packs NC characters from array IN (AI) into word IOUT. NC is expected to

be an integer value between zero and the number of characters per word.

3.9.2.38 XPKM

Subprogram Type: Subroutine

Callin$. Sequence: CALL XPKM(IN,NC,IOUT,LIOUT)

Purpose: Packs NC characters from array IN (AI) into word array IOUT (AS) and blank

fills unused words in IOUT arTay.

3.9.2.39 XPLAB

Subprosram Type: Subroutine

Calling Sequence: CALL XPLAB(LABEL)

Purpose: Initializes the label llne of the ANOPP header for subsequent new page with

ANOPP header requests. LABEL is an array (16A8) containing 128 characters.

3.9-12

3.9.2.40 XPLABQ

GENERAL UTILITIES

Subprosra m Type: Subroutine

Calling Sequence: CALL XPLABQ(L)

Purpose: Determine current label line of the standard ANOPP header.

(16A8) will contain the cut'rent 128 character label line.

Output array L

3.9.2.41 XPLINE

Subprosram Type: Subroutine

Calling Sequence: CALL XPLINE(LINES)

Purpose: Keeps a running count of lines printed thus far on the current page and

detrmines if the number of lines remaining on the current page are sufficient for this

print request. If page is not sufficient, a new page is started.

3.9.2.42 XPUTP

Subprogra m Type: Subroutine

Calling Sequen.ce: CALL XPUTP(PNAME,ITYPE,VALUE)

Purpose: Establishes or changes a User Parameter value in the User Parameter Table

(UPT) or User String Table (UST). A User Parameter is a numerical, logical, or character

string value which is maintained in the UPT or UST throughout ANOPP and may be changed or

retrieved.

3.9.2.43 XSORTF

Subprogram Type: Subroutine

Callin$ Sequence: CALL XSORTF(KEY,LR,NR,IB)

_: Sorts NR records in a core block IB of records having fixed length LR in

ascending binary sequence. The records are to be sorted in terms of the word within the

record whose index within the record is specified by KEY.

3.9-13

EXECUTIVEMODULES

3.9.2.44 XSTORE

Subprogram Type: Subroutine

Calling Sequence: CALL XSTORE(NAME,VALUE)

Purpose: Stores a value into the Executive System Parameter specified by NAME (A8).

The type of the value is expected to correspond to type defined for the parameter. Valid

input names and values follow:

Valid Name Residence THe Range of Values

/XCVT/ LOGICAL .TRUE. onlyNERR

Description: Executive System parameter for error encountered while executing

a control statement. Functional module sets NERR to .TRUE. to indicate an

abnormal termination upon return to Executive Manager.

3.9.2.45 XTBDMP

Subprogram Type: Subroutine

Callin_ Sequence: CALL XTBDMP(ITBL,ITYP)

Purpose: XTBDMP dumps the system table in array ITBL having the table type specified

by ITYP. Valid system table types are i, 2, or 3.

3.9.2.46 XTRACE

Subprogram Type: Subroutine

Callin_ Sequence: CALL XTRACE(LIMIT)

Purpose: XTRACE provides a subroutine trace_back capability which prints the names of

the called and calling subroutines and the lines from which the called routine was called.

The input variable limit indicates the name (A6) of the subroutine to which to trace or

the integer number of levels to traceback. If LIMIT is zero or negative, a trace to the

primary overlay level is done.

3.9-14

GENERAL UTILITIES

3.9.2.47 XTIAL

Subprosram Type: Integer Function

Callin$ Sequence: XTIAL(LOC)

Purpose: Calculates the current allocated length of a system Table Type 1 given LOC,

the first word of the table preface.

3.9.2.48 XTIFV

Subprosram Type: Subroutine

Callin_ Sequence: CALL XTIFV(ITBL,KEYVAL,KEYLOC,ICONT,IPOS)

Purpose: Searches a Type i System Table or Directory, ITABL, for an entry having the

specified value, KEYVAL, in a specific position, KEYLOC, within the entry.

3.9.2.49 XT2AL

Subprogram Type: Integer Function

Calling Sequence: XT2AL(LOC)

Pu____: Calculates the current allocated length of a System Table Type 2 given LOC,

the first word of the table preface.

3.9.2.50 XT3FL

Subprogram Type: Subroutine

Calling Sequence: CALL XT3FL(IT,IC,IP)

Purpose: Locates the position, IP, of the last entry in a Type 3 Table given IT, the

array containing the Type 3 Table, and IC, the position of the character pointer in the

table preface.

3.9.2.51 XT3FV

Subprogram Type: Submoutine

Calling Sequence: CALL XT3FV(ITBL,ICHAIN,KEYVAL,KEYLOC,ICONT,IPOS)

3.9-15

EXECUTIVEMODULES

Purpose: Searchesa Type3 Tableor Directory for anentry in chain, ICHAIN,having

the value, KEYVAL,in the specified location, KEYLOC,within the entry. Valid valuesfor

ICHAINare NT3USD,usedentry chain, andNT30TR,other entry chain.

3.9.2.52 XT3IF

Subprogram Type: Subroutine

Calling Sequenc,e: CALL XT3IF(IT)

Purpose: Initializes new entries in the free chain of a Type 3 Table given IT, the

array containing the Table.

3.9.2.53 XT3LK

Subprogram Type: Subroutine

Calling Sequence: CALL XT3LK(IT,IC,IP)

_: Links an entry into a Type 3 Table Chain.

3.9.2.54 XUNPK

Subprogram Type: Subroutine

Calling Sequence: CALL XUNPK(IN,NC,I_UT)

Purpose: Unpacks NC characters from the word IN (AS) into the array I_UT (AI). NC

must have a value greater than or equal to zero and less than or equal to the number of

characters per word.

3.9.2.55 XUNPKM

Subprogram Type: Subroutine

Calling Sequence: CALL XUNPKM(IN,NC,I_UT)

Purpose: Unpacks NC characters from the word array IN (AS) into the string array

I@UT (AI). NC must have a value greater than or equal to zero.

3.9-16

GENERAL UTILITIES

3.9.2.56 XUNPKT

Subprogram Type: Subroutine

Calling Sequence: CALL XUNPKT(IN,NC,I@UT,MAX_UT,LU#UT,_VFL)

_: Unpacks NC characters from the word array IN (A8) into the string array

I@UT (AI) and truncates an overflow. NC must have a value greater than or equal to zero.

3.9.2.57 XVNAME

Subppogram Type: Logical Function

Ca!ling Sequence: XVNAME(NAME)

Purpose: Determines if input argument NAME (A8) is a valid name.

3.9.2.58 XZFILL

Subprogram Type: Subroutine

Calling Sequence: CALL XZFILL(NAME)

_: Removes the trailing blanks in argument NAME and replaces these blanks with

zeroes, in the event there are blanks preceeding the left most character in the name or

blanks embedded in the name, these blanks will remain unchanged.

3.9.3 AuxiliaryModules

A Utility error processer may be called by any one of the General Utilities if an

error condition is encountered during its execution. Currently there is only need for a

fatal error processor.

3.9.3.1 Utility Fatal Error Message Writer (XUFMSG)

Subroutine XUFMSG (NM,CNAME,VARI,VAR2) processes the fatal utility errors by printing

the error message indicated by NUM and aborting through a call to XEXIT.

3.9-17

EXECUTIVE MODULES

3.9.3.2 System Tables Utility Error Message Writer (XTBERR)

Subroutine XTBERR (NAME, IERR, IARG, IVAL, ITBL, IPL) processes the error messages

for some of the utilities which manipulate system tables. NAME is the calling subprogram

and IERR is the error number. If IERR is negative, the error is fatal and if positive

non-fatal. IARG and IVAL contain informative values pertinent to the error encountered.

ITBL and IPL permit the dumping of a table preface where ITBL is an array containing the

table preface to be dumped and IPL is the preface length. If IPL = 0, no table will be

dumped.

3.9.4 Hierarchy Charts

A hierarchy chart is a graphical representation of the logical relationships between

modules. Figures 1-12 are the hierarchy charts for the General Utility modules and the

auxiliary modules.

All General Utility modules appear at least once as a block entity in the hierarchy

charts. Detail is to the lowest level module except when the called module is a service

module (another utility, or a DSM or DBM module), the auxiliary module XUFMSG, or a

subprogram provided by one of the CDC operating system libraries. However, these modules

are listed in the hierarchy chart figures.

Symbols and headings used in the hierarchy charts are given below:

NAME

purpose

r
f i

NAME I
i I
I i
I l

L J

NAME - module name

purpose - brief description

represents logical module not existing as

entity. It is used for logical groupings.

indicates lower level module is called by

higher level module.

3.9-18

GENERAL UTILITIES

implies logical grouping with no direct

relationship.

in upper right corner of module block

indicates module is expanded as a separate

hierarchy.

ANOPP MODULE CALLED: a list of DBM, DSM, and General Utility

modules called by the modules in this figure.

CDC System Library Subprograms Called: a list of subprograms called by the modules

in this figure and which are not part of

ANOPP system libraries.

3.9-19

EXECUTIVE MODULES

I_>_I
I_ '_ _ I
I_E I

I _,01

I

[--- -- -

I I
___1 _ __1

[_I ._ _ _

I _- > _ I _: Iz
l_OI_ I oo
IX '_"• I ro

s I [

x c
u.l.z

!
__ _ __1 1

l

El .,4 _I__ _ __ I .-J-

L l_.,_

L9 .1_

I 1:1::4-'.,4 1 I _ .,4-,41 I _ _ ",4 1

,-==,l_7=_1L-_i','P7"1 =: '_°_'
1

,_I

i i_
I I

____1 J I

L_ _ __ J. I

_- _-_
l_S_ :_; I

I I i
_ I 1

i_om I
I,--_q-_ _ I

I " t "
_ 1- J

._ ® _ I_ • •

I I I
__ __l _ I

'-'1I_i
m

o_

-,4

o

-,4

4.-'
-,4

.,4

£9

4

bO
-,-I

3.9-20

GENERAL UTILITIES

_ _d p_ cO

gN
_ _2 E-_ X

N 2 ._;

0 _X
Z

<

rO
C_

E

0

., [--, {. H

U3

m _u.
,1::1 '_ r..) _1:_
• ,.4 1_.0_ 1_
_ r.) _--1 1Nt X

-g .&

C..)

0

o
(..)

I

L

[-- ---

I

I-- _ ---J

I_._ I

I_o_I
-I_ l:b

I

[L I

I

_ r

___t _ t

I _ I

L -- -- '_!_.... 1

_,

I -J

,,_
_--_C

.,4

0
0

°_I

.C
0

.H

.,4

.,_

tO

A

_0
.4
U_

;2 " ' ,

3.9-21

EXECUTIVE MODULES

X
.-_

X u

_ O_

(_ t'N o
X

"_ 0
,_[-,

gl

_)
Z _
_ O _

4-1

_ Dx_

f0 _ ,"'_

0

•,"_ 0

o

x N
°_
,-.t

0

0

d

O

O_

c,.bnO K._
x r.

0

.-r.

X 0

_v

r._ x

X

,-I

0

,_

r"

o

a_

x

o;

3.9-22

GENERAL UTILITIES

o

o

co c _

o £) i
xco ;z

o
z

-.'," ¢_ 4a

UJ C _
_ _D 0

tn

, O< OaZ

"o'_

_ _,-_
u_ Un

-- _ .,4

X C

O

n_

H _-_
(D _ H

(m > O
X _:[-_

O
c3

X
,-.4
,-4

c)

u) H

,-4

O H

O

4a

CD

-,4

£-_

c.)
X

('9

(D

_0
,4

3.9-23

EXECUTIVE MODULES

_ ,-_
[9 u -
x _9 u3 .,-4

u

0
_--- _.._ _

U U I

0
,7

X _ _
_ _ O

XHW

I._

(D '_ ,,-4

.n
(,.)

>_
.C
O

m

(D

r/

O
X

.,_

m
t)

O

<

[.9

• 3.9-2_

GENERAL UTILITIES

X._ Q)

z _ 0

0

o=
XCn _

9

DJ DJ a)

X

0

0

_Z
0

-r

X
_J

CD
X

Lc)

(D

C_

m

0 H
x £9

o

3.9-25

EXECUTIVE MODULES

D ,-
x onu

[J ,-H
gJ
.,_
r

4J F-¢
H
(._ • 0
_::; P, -w

X 0 "*"

XqL)_

_._o
u
X 0,._

rj

r...,,

¢-J 0 ¢:_
X_

r4

_J

o
s_

D-,
H

_"_X

_m

u

Q)

u
X

" 3.9-26

GENERAL UTILITIES

(n N

o 0 w

==

_c
o

.c
O

Q)

cD
X

J
_D

t_0
.4

Q;

,-I

c)

m

0

_ x

<

3.9-27

O
.ga .,-{

× _o

Ro_

rj c_
X 0

"d

r"

U E
X 0

cj

N
._

D 0

M _2u f_
c"

2?

U "C_ "_ b a
: ,-4 0.

X I_, ¢_ b.

Z 4-a
W c_ _
O']W _

-- I/J .,-I

EXECUTIVE MODULES

×_<
.C
C.)

,.-I _) 50

I--I L_ 0

C

(n

X

I 0

::_ O-,_

03 _)

X u _:
u3 l

Z

I .z=
c.D

.la

£9 •
_ > O
C9 IZ 4_
X O

C3:I=

3.9-28

C_
H

O_"
H

0

C_

X

°_-_

r

GENERAL UTILITIES

X <

u

.c
0

G)
°_
,1-"

E-.

X
1.4
X

g

NI
0_

Z

x

4_

,..-t

c.b

X

0 XX
Z

,0._.

.3.9-29

EXECUTIVE MODULES

0

f.d _

,-4

Z
O H

_a

@ X

0

M

0 X
Z

,8

.-4
m
£9

0

.4

N

4-)

m
_z

o
;4
m

.,-4

X

o

,,-4

• 3.9-30

GENERAL UTILITIES

o
H

X

E-4

(.} .l_ nl

X _X

.G
Q.I

.-I

0

04
0 X

,G
,--t
,-4

1=

0

_ -F-,

_ r_l I..-I

-,.-4

X

t_

U_

3.9-31

EXECUTIVEMODULES

]

,-I In
:_ _ ¢)
D.4 .I_ '_"_

0

1-4

I.,..I
Z
H

X

U

,'-I

m

u
¢)

o

-I-'

,C
O

.,4

(.9
o_
X

D
X

_4

lao
.,-i

' 3.9-32,

MACHINE DEPENDENT INFORMATION

4.1 OVERVIEW

The following subsections describe the procedures for installation and execution

of ANOPP and of ANOPP Functional Modules. These procedures depend upon the host

computer operating system, and the loader used to accomplish the loading of multiple

overlay segments.

While the examples given in this section have been tested and can be used in

"cookbook" fashion, many variations of these basic examples are available to anyone

with a working knowledge of the specific file oriented operating system and loader

being used. For such knowledge, the reader is referred to the references at the end

of each subsection. The examples given are specific solution to the general problem

of getting the right information on the right file, in the right place, at the right

time.

_.1-1

MACHINE DEPENDENT INFORMATION

4.2 CDC CYBER NOS WITH THE NASTRAN LJNKAGE EDITOR

Five files are of recurring interest during installation and execution procedures.

They are a source file, an object file, an executable file, a loader directives file and

a library file. While these files may be assigned any number of valid names, they have

been assigned mnemonic names such that their use will be more apparent in the procedures

described. The names are:

AN¢PL

AN_PB

AN_PP

SUBSYS

LINKLIB

ANOPP source file in CDC UPDATE Program Library format.

object file of relocatab!e ioad modules, output from FORTRAN compilation

and input to Linkage Editor.

executable load file, output from Linkage Editor.

Linkage Editor segmentation directives file in CDC UPDATE Program

Library format.

load library used by the Linkage Editor to satisfy external references.

" 4,2-1

g

4.2.1

MACHINE DEPENDENT INFORMATION

Installation Procedures

There are four basic installation procedures. In increasing level of com-

plexity, they are:

I. generate an executable file

2. modify an existing module

3. install a dummy functional module

_. install a new functional module

These procedures involve the five important files, AN_PL, ANOPB, AN@PP, SUBSYS,

and LINKLIB. At each step the user has the choice of making either temporary or

permanent changes to these files. These options will be discussed in each procedure

without giving an example of every possible combination.

4.2.1.1 Generate An Executable File

The executable file, AN_PP, is output in random access mode from Linkage Editor

processing. The Linkage Editor requires binary load modules, segmentation direc-

tives, and a LINKLIB. The sample job in Figure i illustrates the binary load modules

coming from AN_PB and the segmentation directives from C_MPILE which was output from

a CDC UPDATE of SUBSYS. AN@PB is output from compilation of source code that came

from an UPDATE of AN@PL. In this example, the compilation listing and directive

listing are printed for future reference, and the binary load modules and executable

file are permanently saved.

_.2.1.2 Modify An Existing Module

If a module in the permanently resident segment, LINKO, is to be modified, then

a full Linkage Editor run must he made to regenerate every link on the executable

AN_PP file. Otherwise, it is possible to do a partial Linkage Editor run to

regenerate only those links containing the modified module or modules. The full case

uses all of the directives from the SUBSYS file as in generating an executable

4.2-2

CDC CYBER NOS WITH THE NASTRAN LINKAGE EDITOR

i!

u
z_
_D Cl.

ffl Z •

Zu IJ Z
_ o CD\

gum

g o.=.

U_[_1, Zl-
0 u X I- n idt- I--

\

\
t-

O
w

i

IR

(J
I-in
n,U

I-Z
v_u.I

\

\
r-
\
_0

o

*
*
*
*

*
*

*

*

*
*
*
.
*

i,
o

*
*

*
*
.

*

*

*
*

*

*

*

0

k
_)
k
r-
%,
_o I

o
c)

o

o
u)

(n

br_

4-,

(9

.,4

q.2-3

{-)7_;'17_'_'>t-:',-_,",_,,_r.,,-n-_<-."
.... "_"_-_t

MACHINE DEPENDENT INFORMATION

file. In the partial case a copy of an old executable file is declared as an INFILE

on The _DIT directive and only Those directives pertaining to the affected links

are selected from SUBSYS. In either case, the modified source is obtained from an

UPDATE of The AN@PL file. The modified source is compiled and the corresponding

modified binary load modules are placed on an LG@ file. The appropriate directives

are selected from SUBSYS and inpu_ to the Linkage Editor along with LG_, AN_PB,

and LINKLIB. The Linkage Editor will search for load modules on LG0 and AN@PB and

will give preference to modules named on LG@ if duplicates occur. Figure 2 gives an

example of a full Linkage Editor run with the executable AN_PP file produced in

sequential mode. Figure 3 gives an example of a partial Linkage Editor run with the

executable AN_PP file produced in random access mode. In Figure 2, the direct

access permanent file, AN@PP, will be w_itTen in sequential form by The Linkage

Editor and must be executed subsequently with an AN_PP. control card. In Figure 3,

the direct access permanent file, AN@PP, was written in random access format in a

previous Linkage Editor run and is copied to a local file, MYFILE, That is used as

both INFILE and 0UTFILE in random access format during This Linkage Editor run. The

file, MYFILE, is executed subsequently with a MYFILE.ATTACH control card.

4.2.1.3 Temporarily Install A Dummy Functional Module

The standard executable version of ANOPP has provided for five dummy functional

modules named FMI through FM5 to reside in links 5 through 9 respectively. For

purposes of this discussion it will be assumed That the user has sufficient knowledge

of The ANOPP executive system and its interfaces to have w_itTen The soumce code for

a functional module and now wishes %o install and execute a test of the module. To

do This, The user must first understand That The ANOPP control statement EXECUTE FMI

will really cause The module in LINK5 to be loaded and executed. Likewise for

FM2/LINK6, FM3/LINK7, etc. Thus, the user must execute FM5 To test a dummy module in

LINKg, but The names of The routines in LINK9 need not be FMS. The names of the

routines in LINK9 are deTex_nined by the INCLUDE directives for that link and must

have been found on LG@ or AN@PB. The following two examples illustrate These

4.2-_

CDC CYBER NOS WITH THE NASTRAN LINKAGE EDITOR

J
Z

u
o
L0

r-
cn
=3
m
z
D
k

Z_)" • -J

_1< mz Z

I ,D - --

Z II Z il n ,I[•

<u \n _Zl-

J.- U)- -.0. m _

)-

Z

n,
J _
- I1:
Q. o

• U - 0_-0 u.J
Z W "r W =, I _-r i "r 0 t',, _ _ A, .. •

DO UI---, U P. U U UN bJ -,U Ok- _eOOK << . < << << . v ._ . _

o u'r I- D. I-- _- n I- I-- I-- Ia -- IL bJ < OZ
") < O < D IL < D < d < E J tY n' _E J <

o
i_
.,q

t_

.,-i

f,
o

D-

o
(0

m
o

o

4.2-5

MACHINE DEPENDENT INFORMATION

Z

U
O
Ill

h
19
CO
#

z
D

Z_3 > .,I

Z ,D .- --
U <_ ,b. ,J

Z s Z._)'<"
< U \ O. Z sr Zl "-
11 • • ¢/) - _ .. _Q

z

J _-

J.- bJ > .-0. O. mw O. OU

z ',ooo

... oo..O0 Z V) O< < _[.JO "_

_J U 0 I.-.Jo u,-.- u,- uw uu.: w-
U < I-- 0 Z t'- O (1.1.- -I

O U Z I,- G. l- _- n_- O P_- b. --_d (O)-
_ < U ._ D tL < D <[U << _ ..J I_ :[.J =[

@ O' @
\ \ \ \
tD CO 00 00
\ \ \ \

f- _- r- f"

Ct _ ,D
O O O

_ ill h
O

* *
* * *
* * * *

* * * *
* * * *
* * * *

* * * *
* * 0 * *
* * 0 *
* * O * *

* * -- * *
* * li m *

* * ,0 * *

* * _-. * *

* bd * O[* , *

, t-- * < m *
* < * (1 * *
, .- * o * *

* 0 * -- * *
* I_ * bJ * $
* _ * _J * *

(I

O O)- O O

_[_ 10 0

* -- * J _ * $
* 69_$ -- Z * *
* ZZ* KL --$ *
* O'-* _ J* *

* --J* D * *
, b- , 0 _ * *

* <[Z* • _[* *
* U--* -- I* *

$.- * U I- * *
, b I-* v , ,
* --0* _ n,, ,
, thz, J w, •

e , 0--* -- I* *
o * E $ U. I"m * *
,- * _*)- 05 *
m * om$ IE -, ,
>. * Z--* II 69 * *

_. * U* JZZ* *

* bJO* h J.J* ,
* _ * ZO * *

* Z_$ --ZbJ* *

* _[< * • I- ,.< *

.m°i" "i" °_0 Zl..- OZ I&ll'- bJ

%. --_ U _,-- {3-- UU _ I-- Z _
I_ * * , p-* * J * * !'- Vl _ _)

0

cO

,-4

.,4

0
4-i

114

"0

0

o

0
_n

®
4_

-0
O,

oO
..,4

4.2-6

CDC CYBER NOS WITH THE NASTRAN LINKAGE EDITOR

concepts. In the first, a dummy module consisting of the single subroutine FM2 has been

installed in LINK6, and secondly a dummy module consisting of three subroutines has been

installed in LINK8.

In Figure _, the dummy module source code consisting of the single subroutine FM2 is

compiled and the relocatable load module FM2 is placed on the file LG_. Then a partial

Linkage Editor run is performed using the set of directives for LINK6 called from SUBSYS.

These directives already have an INCLUDE statement for the dummy routine FM2. Then the new

executable version of ANOPP on the local random file MYFILE is executed and the dummy

functional module is tested via the EXECUTE FM2 control statement.

In Figure 5, the dummy module source code consisting of the three routines MYM_D,

MYM_DA, and MYM_DB is compiled and the three relocatable load modules are placed on the

file LGZ. The Linkage Editor directives for LINK8 are supplied from INPUT to reflect the

overlay structure desired for the three routines of the dummy module to be tested. A

partial Linkage Editor run is made to construct a new version of the ANOPP executgble code

on a local file, MYFILE. This version contains the new dummy routines in LINKS. The

dummy module can be tested by placing an EXECUTE FM4 card in the ANOPP control statement

set and executing an ANOPP run via the MYFILE.ATTACH control card.

4.2.1.4 Permanently Install A New Functional Module

Permanent installation of a new module requires some minor modificiations to part of

the ANOPP executive management system. The primary concern is to match the new module

name with the new link in which it resides. This is accomplished via matching entries in

the two arrays FMN and IFMN in the subprogram XRTSEX. The length and contents of these

arrays are controlled by INTEGER and DATA statements in the same subprogram XRTSEX. The

number of active entries in each array is controlled by the variable NFM in the common

block /XCS/ and is set by a DATA statement in the subprogram XCSBD. Array FMN contains

the names of existing functional modules, and array IFMN contains the corresponding link

numbers. At present, du,_ny modules FM1 through FM5 in links 5 through 9 are permanently

installed.

a,. 2-7

MACHINE DEPENDENT INFORMATION

J
Z
e

u
o

aD
Ii

Z \
2

II _,.

Z Z .J o Z _0 U • m I-

• o o o o • _ 0 I- L o j •
Z W Z'-'r WZ "r IrlO b. w o w

t--O. I-- a k-
0 U Z I- I-0 1.- n !- I- IL _ _ IlJ£) >.

00 00
\ \

0 o
w uJ

e
• e
• e
• ,
*

e
• ,
• • o
• 11, o
• • o

• • u

, _- , n

, e r_
• _J ,

D • J
th

n, 0 I_ I,L
0 _E 0 >-

,-I ml
• .ei $ U.l
• Z $.J
$ 0 $..-

• l'm * _"
$ U $ D
$ Z $ o
$ D $,'
$ IL $.-.

$).. ,
$ • * b.l
$ _E * J
• D * --
, r, $
$ $ >.

$ O $ u
• I_. , bJ
$, J
$ v $.
$ U $ _..
$ W $ Z

$ ILl * e_-
• U $ P._

O O O

I"$ • $ h. * $ J

u_
v
Z

.J

m

.J.J

uu

O_ 0_

_0 GO

h h
\

Oc
o
bJ b.

o
$ bJ
$
$:$
* $
$ *
$ *
$,

$,

$ $
$,

$,

$,
* $
$ $

$ $
$,
* $
$ b.l Iz.l ,
* I- I-. ,
* .eI <I $

O n G. O
bJ O O

* O. (I ,
$ O. n ,
$ < < ,

$ eI < $

$,

, I- (-. $
* Z Z $
$ bJ U.l $

:$ bd b.l $
, ¢- ¢.- ,

$ I.- I- $

$ $
$ J -I $
$ 0 O $
$ n, O! *
$ I-- I-. $
$ Z Z $
* OleO *
$ U u

bJ Ul Z _ Z ill O_

_- D _0
n, U U
m< UJ Oh
_P- x Z%.
I"- _ lit ti.I _ b.I _0 I

c,4
-

,._

o

r0

o

4-,
rJ

4J

U

x

o

_J
,..#
cL,-

m

e)

b
bO

°,-I

4.2-8

CDC CYBER NOS WITH THE NASTRAN LINKAGE EDITOR

{D
n
O _ m
Z 0 _3

O O O

O)-)" >-

m ID ::D m
ft. n n

0 C_O '_'0 td 0
Z OZZZZZ
._ Z_ O(_O_

)- in
)- E _)- _1)- u.I %,
arm O_O_t% Z

(XJ J J

{B Z I--U hlU ,1U O tn
" "_ ZZ > Z > Z ZZ
J J ILl-- O -- O -- W llJ

\
O0
\
t-

rr
0
W

* bJ UJ
* I- f-

[3 & &
kl 0 0

n, n,
, n n

, In In

* Z Z

* J .J

, 1"_ o¢

, 7 3,
* 0_0
, U U

ll:£n
n.' _, o a. n
0 0 0
KI v:, Z _.1Z _,

(_f- 3 In
_, tr U U

_- X Z
I,- In e _ _ Ill

C_

\
_O
\

\
4D

h
O
bJ

*

*
*

*
*

*

b.
O
bJ

*

*

*

*
*
*

*

*

*

*

h.
O

(_
"k
(13
\
t'-

%,

D

O

O

(J

,-4

_n

a

bh

-,-I

O

(D

O

O_

CO

Q)

.,_
U,

4.2-9

MACHINE DEPENDENT INFORMATION

In Figure 6, an example of adding a new module with the symbolic name NEWM_D is

given. The module will be placed in LINK10. To begin with, the source code for NEWM_D

and the required changes to the executive management modules is obtained by an UPDATE of

the source file AN@PL. In this example, the NFM variable is increased To 6 and The name

NEWH_D is placed in the array FMN while the link number I0 is added to the array IFMN.

After compilation, the binary load modules are placed on the file LG@. A full Linkage

Editc_ run must be performed since a subprogram in LINK0 is being changed. Thus, all of

the directives from the SUBSYS file plus the new LINKI0 directives must be used. The

new version of ANOPP is executed by an AN_PP.ATTACH card and the new module is tested

with an EX_EUTE NEWM@D control statement.

In this example, it is assumed that the new module was previously tested thoroughly

as a dummy module and that the installation is intended to be permanent. Therefore new

versions have been created or rew?itten for the source file, AN_PL; the binary file,

AN_PB; the directives file, SUBSYS; and The executable file, AN_PP.

_.2-10,

CDC CYBER NOS WITH THE NASTRAN LINKAGE EDITOR

Z

ii
x
\

ZZQ.

ii,-.,.J
_J(O
f_ ii •

ev'J

Z •tD ,Z
• 3Dr) -

il U'})- _i

• m\Q m•
k _ul •D \
m O_---_n

• zln . "6.

J Zo D Z

: 9%3 Jo
ZWIWZ -_ O_I_Z _
DQ9 --u Z u#....

,,.),,_ J- 00. Zl- _, O. 00. I.-_-
0 u'r _- n 0 _- bJ 0 _-_. 0 _-
"3 < U < DU b. < (_ U < D U _,_

@
\
G0
\
r-

Ix
0

* \ \

* -o

$ 0 --
* •

, b.l
* Z

, ;g

b.
n, I
O _

, s" _ 0
Z * b. b. 0
• , "r Z _"

U $ I'9 -.

* z

1'3 * IL _/
_ , T _

D * I: _",, _ •
m - ,I, • q rr
.- U_ * b. k 0
.J)" * 1. " II.
V V) * _ >
Z k * ILl v
-- Z * @%%, _1 u
..J • < * ID X b..l
• • W (Z * --, Z Z ,n
_-- _J k- * "Z• "

M • _. _ • b. U* -- _D n,
Zo_O0 e< •<_-- Q D

0 0 _0 • m_-n, _E X I- _.- • 0 0

1" 0 0 0 _ W h • • W _-- _ _ _J

b_ W.-b. bJ< r_ Z% -- _ C_ < 0%` %` %`
Q l_' J n' {_ • J,_ I_ , * * * $ $ * *

O_
%`

\
l'-

n,
0
w

IX
o
I,J

*
*
*

*
*
*

*

*

*

*

*

*
*
*
*

*
*

0
hJ

@
\
_D
%`

,j

x

c

o

-o
®

c

.jo
v

,--t

o
m:

o

4_
u

L_

<

,-t

_w

4J

O

_u

U?

NI
,,..t

4.2-II

MACHINEDEPENDENTINFORMATION

cO _O
\ \

O
m b.

O

:
:
:
:
:
:
:
:
:
:
: _:
_ _o _
: _ _ :
: _ _ :
: _ _ :
: . . :
: _ _ :

: 5 "_ :

_: :
.o

: _ :

o Io • I

W ,%r-
"_ _ O-- Z Z Z k _- X Z \

%;
v

..-4

O
U

v

0

0

§

,-I

m

I.--4

II

0

,-4

m

_.2-12

k_.2.2

CDC CYBER NOS WITH THE NASTRAN LINKAGE EDITOR

Execution Procedure

Execution procedures involve both the external host computer operating system en-

vironment and the internal ANOPP executive and data base management system. The external

system is concerned with initiation of program loading and access to system files. The

internal system is concerned with interface and access to and between external files and

internal data base structures. Some operations must occur in pairs or combinations while

other procedures or control cards act independently.

4.2.2.1 Program Loading

Loading procedures for the executable program vary depending upon the random or

sequential mode of the file to be loaded. The executable file is a double file containing

a bootstrap program and executable program separated by a file mark. The control card

that loads the executable file actually loads the bootstrap loader program that then

accomplishes loading of the executable program. The actions taken by this bootstrap

loader are determined by the form of the control card. If the bootstrap loader program

and executable program reside on an executable file named AN_PP, then the loading options

are:

I°

2o

LDSET,LIB=F@RTRAN/SYSI_.

AN_PP.ATTACH

This form is used by the bootstrap loader to execute an executable file that

exists in random format. A random format is produced by the Linkage Editor as

an @UTFILE with R or C status. It can also be produced from a sequential file

by the bootstrap loader under the CATL_G option (see 2. below).

LDSET,LIB=FORTRAN/SYSI@.

AN_PP.CATL_G(XXX)

LDSET,LIB:FORTRAN/SYSI#.

XXX.ATTACH

These two control cards must appear in a pair and the name xxx may be any valid

file name, but must be the same name on both cards. The CATL_G command in-

structs the bootstrap loader to transform a sequential executable file AN@PP

into a random executable file xxx. The random file xxx is then executed with

an ATTACH command similar to i above. The file AN_PP must be sequential and

could only have been produced by the Linkage Editor as an @UTFILE with S or T

status.

_.2-13

MACHINEDEPENDENTINFORMATION

3, LDSET,LIB=FORTKAN/SYSI_.

AN_PP.

This form may be used to execute a sequential executable file output from the

Linkage Editor. In this case, the bootstrap loader internally generates the

equivalent of 2 above in the form AN@PP.CATL_G(SYSLM@D) followed by SYSLM@D.

ATTACH. This form may not be used with random executable files.

The N@S operating system and FORTRAN extended language together provide the'option of

changing the names of program files at execution time. This is accomplished via an order

dependent substitution of file names on the control card That initiates program loading.

For AN_PP, the two main program files are INPUT and _UTPUT as declared in the main program

XM. Alternate file names can be substituted for them by altering the AN@OPP.ATTACH and

AN_PP. execution sequences above. Substitutions cannot be made with the AN@PP.CATLOG

card, but may be placed in the xxx.ATTACH command. The substitutions are made by including

the alternate names, separated by commas, between the final P in AN@PP and the period(.).

The list is order dependent, but may terminate early. However, leading commas must be

used to space over leading files for which no substitution is desired. For example:

AN@PP,ALTIN,ALT@UT.ATTACH

AN_PP,,ALT_UT.

XXX,ALTIN.ATTACH

_.2.2.2 Data Interfaces

Certain correspondences must be maintained between internal data units and external

files during an ANOPP execution. Other correspondences can be noted from one execution to

another. For example, an ATTACH of a data unit and external file must have been preceded

by a CREATE of the internal data unit and a SAVE of the corresponding external file in

another run. Most of these restrictions have been mentioned in descriptions of individual

ANOPP control statements. Two examples of ANOPP executions that illustrate inter and intra

job dependencies are presented.

qhe first job, in Figure 7, _egins with at%aching a direct access permanent file

AN_PP which was previously output as a sequential executable file by the Linkage Editor. A

sequential external file SEFN is accessed, a direct access permanent file EFN3 is at-

4.2-14

CDC CYBER NOS WITH THE NASTRAN LINKAGE EDITOR

Z_

31--
Z Ii U

g. -,×1,3_ •

)-)- OL

_x\ I--
znz U

O_Zn_ oa
k-_b- k-

O_OlZZ

\
OO
\

n,
O
w

o
w

hOhUDh*

IL Z 0 • I- I- U')iZ _

i,_ ,_ Z IL/'_ 0 I • ,-, ,_ _ I-- Z " 0
Z _J I _J I _J _I bJ _ o • • • I_IU U
D _ U_ U Z -- U 0 I- 0,.(- X - _ _ F-

triO

\

Z
b_
_J
\

z .

\ •
bJ

Z _r
I,

.-,ILl(/)

0
_. Z

• ILl
bJOI-
m-- D

re,It- _
n,,_ x
UOlU

_3
Z
LLI

ii

U *

I_ 0 •0
U _l I_

° ._

Z_ m 0 o
D _J _- -- kn

D _ _ _I •

-C DO

J-- _l_ hi II II

Odl-\
I-- -- Z t")
Z LL

-U3Z

U -- _ 14J¢/)

0 0 g) I- _Q n 01"-- u .Jn_ Q
I1 ,,_ Z,_ Z Z Z b.J Zb..In' Z D Z

\
_o
\

\

h
o
_J

_k

b
o
w

o
w

%

\

o

_D

b

4.2-15

MACHINEDEPENDENTINFORMATION

tached,andanotherdirect accesspermanentfile AN@PXis defined. TheANOPPprogramis

loadedandexecutedvia TheCATL_/ATTACHsequence.Thesequentialexecutablefile

AN_PPis transformedby the bootstraploader into the randomexecutablefile AN_PXand

then loadedandexecutedvia the AN_PX.ATTACHcontrol card. Duringexecution,UNITIis

createdwith a scratch external file nameandUNIT2is createdwith anexternal file name

EFN2. UNIT3is createdandconnectedto the externally attachedEFN3.MemberMEMBIis

placedon unit DATA.MemberMEMBIis addedfromDATATo UNITIduring the ANOPP UPDATE

control statement processing. Member TBLI is placed on UNIT2 during ANOPP TABLE control

statement processing. UN!T2 is detached from Data Unit Directory but the external file

name EFN2 remains open in the external system. UNIT3 is ARCHIVED. The remaining non-

archived data unit in the Data Unit Directory, UNITI, is unloaded to the sequential

external file SEFN. The purge of UNIT3 causes the data unit name UNIT3 To be removed

from the internal unit directory and the external file name EFN3 to be removed from the

external system file Table. Following ANOPP execution, the external file EFN2 is per-

manently saved as UNIT2 and the sequential file SEFN is replaced.

The second job, in Figure 8, begins by copying the ANOPP primary control statement

set from INPUT to an alternate file _THERIN. Next the sequential external file from job

I, SEFN, is accessed and the external file equivalent to EFN2 in job i is accessed from

The permanent file UNIT2. Then the previously created random executable file is obtained

by an ATTACH of AN@PX and loading is initiated via a bootstrap loader ATTACH command with

the alternate input file @THERIN substituted for INPUT. DuPing ANOPP execution, the data

unit UNIT2 is attached into the Data Unit Directory and connected with the existing ex-

ternal file UNIT2. UNIT1 is loaded from SEFN after which SEFN is removed from the Library

File Directory and from the external system file table via the DR@P control statement.

After all cracking and substituting is accomplished, the CALL control statement eventually

leads to execution of the AN@PP control statement EXECUTE N_ISE UNIT=UNIT2,MEMB=TBL1 $.

u,. 2-16

CDC CYBER NOS WITH THE NASTRAN LINKAGE EDITOR

v)
>-

k
-- X
rr -4
We _rr
IZ ZP
P--- _nt
on" XO

-W _ n b.l-I • 0 Io
DP ,NO • Z{D

l-°-o
Z bd -- O bJ Z lit) b.I IL "r" ,-
D _ " Z _ D-" U OU l--

Off>- D

O U "!" O bJ bJILilL LIJ < I'- r_

0_ 0_

QD co

r. f-
\

rr
0
_j h

0
* lu
$

$ $

* $
*k ,
* ,k

* *k
$ *

* $
$ *

,k ,
$ x<

% $

0 0
bJ bJ

* $
e $

, _ ,
, m ,
, I- iI_

$ 5. W,

$ t_l •

$ Z $

I-$ *•

--$ N_} 5
_Y* J- \-- b
bJ -- \ Z.-. 0

o UZUlkD %
x O_ 1.- u % Ul_

N 0E <[O __1u %_O E)<[l-< _IO %
Z \ l-l- 00_ <Z "%
,_ P.- u_ ,_ _,, _:) U bJ tD

:E

=E

_J

¢_
:E

r_

t)

,-{

O

7,

P-,

4-'
:3
u

×
Lo

o

o)

E
rd

co

.,-,4

_.2-17

\MACHINEDEPENDENTINFORMATION

4,2.3 CDC CYBER NOS DEPENDENCY

I. Coding Standards Violation;

2. Direct use of operating system capabilities; and

3. Interfacing the ANOPP Data Base Manager with the CYBER Record Manager.

The following paragraphs document what these dependencies are and where they are in

ANOPP.

4.2.2.1 Srandamds Violations

1. Use of the intrinsic functions available through CDC CYBER FORTRAN EXTENDED.

2. Use of "no mode" arguments in subroutine and function calls.

3. Use of named block data subprograms.

4.2.3.2 Operating System Dependent Subprograms

a. XBSDFL - This CYBER COMPASS subprogram uses the MEM macro to determine the

amount of central core memory available for the ANOPP run.

b. XPURGE - This CYBER COMPASS subprogram uses the UNLOAD macro to dispose of

unwanted files.

c. M_CRMX - This FORTRAN subprogram is used by CYBER RECORD MANAGER if an error

is found in accessing an ANOPP data unit.

d. XTRACE - This FORTRAN subprogram uses FORTRAN generated trace back struc-

tures.

The following subproiq-ams use CDC CYBER Record Manager subprogram calls to perform

input/output operations:

I. MMFEFB 6. MMRMD 11. XLDEND 16. XUN

2. MMGEFB 7. MMRMH 12. XLDFDM 17. XUNBGN

3. MMGET 8. MMUHMD 13. XLDFDU 18. XUNCPY

4. MMMDMH 9. XDR 14. XLDLDM 19. XUNEND

5. MMPUT I0. XLDBGN 15. XLDLDU 20. XUNLUH

4.2.3.3 I/_ Interfaces

On CDC CYBER NOS, the ANOPP Data Base Manager makes use of the CYBER Record Manage#

(CRM) for all input and output. Data Unite ape written to word addressable files using

unformatted records. ANOPP Library Files are generated using CRM Internal blocking (I)

4,2-18

CDC CYBER N0S WITH THE NASTRAN LINKAGE EDITOR

and control word (w) record format. On NOS, CRM has FORTRAN callable subprograms which

are heavily used by ANOPP Member Manager.

L¢.2-19

APPENDIX A

GLOSSARY

Alternate Names - The set of names, established on the EXECUTE CS, which corre-

sponds to a set of reference names. The set of alternate names

is maintained in the Alternate Names Table and is available for

retrieval by a functional or an executive system module during

the execution of that functional module.

Cleanup Procedures Functions performed upon completion of functional module to

insure the integrity of the ANOPP system environment. Includes

corrective action taken when system conditions are invalid.

Control Statement (CS) One or more card images which define a particular action

to be performed by the ANOPP EM System. A set of control

statements defines the execution sequence of an ANOPP run.

Contpol Statement Processing Phase - The phase of EM execution in which the control

statements are processed.

Control Structure - A table, a directory or any other information block which is

core resident and not residing on a data unit/member.

CS - see Control Statement

DATA - DATA is the data unit created by ANOPP Executive Management

System. It is used to store data members created as a result

of the DATA control statement encountered in the Primary Input

Stream.

Data Base Management System - (DBM) The subsystem of AN@PP which provides a method of

storing and retrieving data on auxiliary storage. Used by the

ANOPP executive system and by functional modules.

- A table, a directory, or any other information block which

resides on a data unit. The general organizational structure

Data Base Structure

A-I

DataElement

DataMember

DataMemberFormat

DataRecord

DataTable

DataTableTypei

DataUnit

DBM

DM

GLOSSARY

of a dataunit anda datamemberapealso includedas data

basestructures.

- Oneor morewordsresiding on a formatteddata record. Thenum-

ber of wordsis determinedby the data memberformat.

- (DM)Anorderedset of informationwhichresides, in a log-

ically continguousfashion, ona dataunit. Theinformation

includes userdataandDataMemberManagerdata.

Specification whichdescribesthe compositionof data records

residing on a data member. The specification for a formatted

record is a string of element codes.

An ordered set of data elements or words residing on a data

member. The record may be unformatted or it may be formatted

as fixed, variable, or card image according to the data member

format.

- A user-created table of data available to the functional module

for processing. A one-record data member having an internal

format corresponding to a defined Data Table Type.

- A tabulated function of n independent variables (present maxi-

mum = 4) for which acceptable interpolation and extrapolation

procedures may be defined.

- (DU) A Data Unit is the highest level of the ANOPP Data Base

Management System data structure that can be referenced directly

by ANOPP modules. It is physically stored on direct access

storage devices and is uniquely identified within an ANOPP

run by a data unit name. A data unit is a set of data members.

- see Data Base Management System

- see Data Member

A-2

GLOSSARY

DSM - seeDynamicStorageManagementSystem

DU - seedataunit

DynamicStorageManagementSystem- (DSM)Thesubsystemof the ANOPPExecutiveMana-

gementSystemthat providesa methodof allocating andre-

leasing blocks of core storagewithin ANOPP.

Elementcode - Descriptorwithin a data memberformatusedto describean

elementcodefor a onewordinteger element.

EM - seeExecutiveManagementSystem

Endof Data - (E_D) endof data character($), recognizedby the Executive

CrackingModule(XCR)and ExecutiveCrackWithoutConversion

Module(XCRWC)as the terminationof characterstring data.

Utilized primarily as the terminator of control statement

images.

E_D - seeEndof Data

Error ProcessingPhase- Thephaseof EMexecutionwhichdeterminesthe action to be

takenwhena non-fatal error occursduring the processingof a

CS. Theaction dependson the valueof systemparameterJCON.

JC_N= .TRUE.results in the resumptionof processingwith the

CSfollowing the CSin error. JC@N= .FALSE.results in the

resumptionof processingwith the next PR@CEEDCSor ENDCSCS,

whicheveroccursfirst.

Error TerminationPhase- Thephaseof EMexecutionwhichresults in abnormaltermina-

tion of ANOPPwith an informativemessageas to the cause.

It is enteredwhenanexecutivemoduledetects anerror condition

whichinhibits further meaningfulexecution.

ExecutiveManagementSystem- (EM) Thesubsystemof ANOPPwhichperformsinitialization

andvalidation of the ANOPPSystem,directs the sequenceof

processingbasedona user-suppliedCSset, directs action taken

A-3

GLOSSARY

after the occul_Panceof a non-fatal error, andperformsa

normalor abnormaltermination.

F.M. - seeFunctionalModule

FunctionalModule - (F.M.) Oneor moreexecutablemodulesrecognizedby the ANOPP

executivesystem. A functional moduleis called into execution

whenthe ControlStatementProcessingPhaseencountersan

EXECUTECSandtransfers control to the FunctionModulePro-

cessingPhase.

FunctionalModuleProcessingPhase- Thephaseof EMexecutionwhich interrupts the CS

ProcessingPhaseandbrings into executionthe F.M.specified on

the EXECUTECS. Uponcompletionof the F.M., the integrity of

the ANOPP system environment is validated and insured through

Cleanup Procedures.

GDS - see Global Dynamic Storage

General Utilities - a collection of general purpose modules available for usage by

all executive system routines. Most of the general utility

modules are also available for use by functional modules.

Global Dynamic Storage - (GDS) A section of free core storage defined and maintained by

DSM to provide for inter-module communication and for storage of

ANOPP directories and tables. GDS resides at the end of a

user's field length for the life of an ANOPP run. The length

is detemmined by a parameter on the ANOPP CS.

Hierarchy Chart - A graphical representation of the functional relationship between

modules.

IDX - An IDX is an integer variable which contains the location of a

block of dynamic storage relative to a reference point which,

for the ANOPP system, is the /XAN_PP/ common block.

A-4

GLOSSARY

Index

Initialization Phase

LDS

Local Dynamic Storage

MOO1

Member Manager

MM

Module

Mxxx

Location relative to beginning of table or table entry re-

ferenced with an ordinal of I (one). Used primarily in DBX

module prologues and descriptions.

The phase of EM execution which controlls the initialization of

the ANOPP system environment, which includes printing of the

standard ANOPP title page, processing the Primary Input Stream

through the STARTCS CS and performing initialization func-

tions for EM, DBM and DSM.

- see Local Dynamic Storage

- (LDS). That part of core storage maintained by the Dynamic

Storage Management System that begins with the word following

the longest segment in current execution and ends at the start

of GDS.

- The data member name which contains the Primary CS Set on XSUNIT

data unit.

- (DMM, MM). That part of the DBM sub-system which provides the

F.M. writer and the EM subsystem with basic open/close,

read/write and position functions for creating, accessing,

and maintaining data members.

- see Member Manager

- A FORTRAN or COMPASS subprogram.

- Name of the data member which contains a Secondary or Primary

CS Set.

Mxxx Completed Execution - Completed execution describes the status of an Mxxx member

*-Ooe

when all control statement records on that member have been

processed. The Mxxx member is not in current execution or in

suspended execution.

A-5

GLOSSARY

Mxxx Current Execution - Describes the status of an Mxxx member when that member is

open and The control statement records on the member are being

processed. The CS currently in execution is on the Mxxx member.

Mxxx Suspended Execution - An Mxxx member is put into suspended execution if, during

processing of the Mxxx member by the CS Processing Phase, a

CALL CS is encountered. The Mxxx member in current execution

is closed and processing resumes with the Secondary Input Stream

specified by the CALL CS. When the Secondary Input Stream is

completed, the Mxxx member in suspended execution is re-

opened and processing resumes with the CS following CALL.

Normal Termination Phase - The phase of ANOPP execution which is entered when CS Pro-

cessing Phase is complete, and includes printing an informative

message, closing member MOO1, and halting execution.

Parameter Maintenance Functions - A group of general utilities which establish, change,

or retrieve user parameter values. These include XPUTP,

XASKP, and XGETP.

Position - Word position relative to beginning of table or /able entry

referenced with an ordinal of 0 (zero). Used primarily in

DBM module prologues and descriptions.

Primary CS Set - .The executable form of the Primary Input Stream constructed

during the Primary Edit Phase. It resides on the root member,

MOOt, on the EM unit XSUNIT.

Primary Edit Phase - The phase of EM execution duping which the MOO1 root member is

built from The control statements in the Primary Input Stream.

This phase follows the completion of the initialization phase.

Primary Input Stmeam - The set of card images found in The ANOPP input stream beginning

with the first image following the STARTCS control statement

and including all images through the ENDCS control statement.

A-6

RootMember

SecondaryCSSet

SecondaryEdit Phase

SecondaryInput Stream

SystemParameters

SystemTable

TableManager

TM

GLOSSARY

- seePrimaryCSSet andM001.

- Theexecutableformof the SecondaryInput Streamconstructed

during the SecondaryEdit Phaseandresiding onan Mxxxmem-

ber on XSUNIT.

- Thephaseof EMexecutionduringwhicha CALLcontrol state-

mentis processed.Onthe first executionof a CALLCS,the

SecondaryEdit Phase builds an Mxxx type member containing CS

records that correspond to control statements in the Secondary

Input Stream. The Secondary Edit Phase provides the environment

required for the CS Processing Phase to resume execution with the

first control statement on the new Mxxx member.

- A set of control statements residing on a data member in card

image (CI) format and brought into execution when a CALL CS

is processed that specifies the member as the DU (D_[) parameter

on the CALL CS.

- Variables used in determining characteristics of a particular

ANOPP run. The default values of certain executive system

parameters may be modified during the Initialization Phase

via user-supplied values pmovlded on the AN_PP CS. The value

of user system parameters may be set during CS Processing Phase

via user-supplied values provided on the SETSYS CS.

- A data structure used by various executive modules. The table

structure has two parts, a preface and a body. The preface

describes the table's current status and the body contains the

entries.

(TM). That part of the DBM subsystem which provides open/close,

build, and interpolate functions for data tables.

- see Table Manager

A-7

UPDATEUtility

UserParameter

Utilities

Uxxx

XSUNiT

GLOSSARY

- AnEMsubsystemwhichprovidesthe AN_PPuserwith a meansof

building a newdataunit usinganexisting dataunit as a basis

for modification or drawingfromdata members on several data

units. It is initiated via the UPDATE CS.

- A parameter, when once established, remains available to the user

throughout the ANOPP run. The value of a User Parameter may be

established or changed during the CS processing phase via the

PARAM CS. The value of a user parameter may be established,

changed, and retrieved during the F.M. Processing Phase via the

Parameter Maintenance Functions.

- see General Utilities

- A member, residing on the EM System scratch unit XSUNIT, con-

taining card image source input data encountered in the Primary

Input Stream during the Primary Edit Phase.

- The executive scratch data unit created by the ANOPP Executive

System modules. It is reserved for ANOPP Executive System usage.

A-8

APPENDIX B

INDEX OF MODULE NAMES

B.1 EXECUTIVE SYSTEM MODULES

The ANOPP executive system is comprised of many modules. Each module is part of the

Data Base Management System, the Dynamic Storage Management System, the Executive Manage-

ment System, the UPDATE Subsystem, or the General Utilities. In the following section,

all ANOPP modules are given according to the corresponding executive module in alpha-

betical order. With the module names are given the Figure number of the hierarchy chart(s)

which contains the module, and the section number where a description of the module can be

found (if applicable).

B.I-1

INDEX OF MODULE NAMES

B.I.1. Data Base Management System

B.I.1.1. Member Manager

The modules comprising the DBM are listed below. Figure numbers refer to figures in

B.1-2

Section 3.6.3

Name Figure(s) Section

MMBAME 2,13,14,15

MMBFSI 3

MMBFST 3

MMBFTI 3

MMBFT8 3

MMBFT9 3

MHBMCI 4,13_14,15

MMBMH 3,14,15

MMCL#S 1,4 3.6.3.7

MMCLSE 4

MMCRMX 4,7,11,12,13,16,20,23

MMD_HC _ ,5,13,23

MMEDNM 1,4,8,9,10,12,17,18,19

MMERR 6 3.6.3.8.1

MMFEFB 5

MMGED 8,17,21

MMGEFB II

MMGET 7,8,9,10

MMGETE 1,8 3.6.3.5.3

MMGETR 1,4,9 3.6.3.5.1

MMGETW i,I0 3.6.3.5.2

MMGNEW 8

MMGNWE 8

MMI@MC II,13,14,15,23

MMMD_ 4

MMNWR 12

MM_PRD 1,4,_3 3.5.3.3.1

MM_PWD 1,14 3.6.3.3.2

MM_PWS 1,15 3.6.3.3.3

MMP@SN I 3.5.3.6.1

MMPUT 16,17,18,19

MMPUTE 1,17 3.6.3.4.3.

Name

MMPUTR
MMPUTW
MMREW
MMRMD
MMRMH
I_RRS
MMSAMD
MMSFEI
MMSKIP
MMS(JD
MMUHMD
MMUPMD
MMVBA
MMVNM
_4VTD
MMVUM

EXECUTIVESYSTEMMODULES

Figure(s) Section

1,4,18
1,19
1
4,13,20,23
13
12
2
8,17,21
1
22,23

4
4,5,7,12,13,16,20,23
13,14,15,22
13,14,15
24

3.6.3.4.1

3.6.3.4.2

3.6.3.6.2

3.6.3.6.3

3.6.3.8.2

B.1-3

INDEX OF MODULE NAMES

B.I.I.2 Table Manager

The modules comprising the TM are listed below.

Section 3.6.4.7

Name Figure(s)

TMBLDI 24

TMCL_S 24

TMEA 26

TMEAIN 26

TMEARS 26

TMEARD 26

TNEB 26

TMEBIN 26

TMEBRS 26

TMEBRD 26

TMEDI1 24

TMEDTB 27

TMERR 25

TMFTE 24

TMGENI 24

TMINX 27

TMiNYZ 27

TMINEX 26,27

TMLIN 26

TMLINT 26

TMLRS 26

TMLRD 26

TMM_PN 24

TM_PN 24

TM_PNA 24

TMSRCH 27

TMSTD 24,27

TMTERP 24,27

TMTABP 27

TMTBLI 27

TMTBL2 27

TMTBL3 27

TMT_PN 24

TMVSEQ 24

Figure numbers refer to figures in

Section

3.6.4.5.1

3.6.4.3

3.6.4.6.1

3.6.4.2.2

3.6.4.2.1

3.6.4.4

B. 1-4

EXECUTIVESYSTEMMODULES

B.I.2 Dynamic Storage Management System

The modules comprising the DSM are listed below. Figure numbers refer to figures in

%

B.1-5

Section 3.7.S

Name Figure(s) Section

DSMB 1 3.7.3.1

DSMCAB 3,9

DSMC_N _ ,6,7

DSMDFB 9

DSMDLK 3,4,9 3.7.4.1

DSMERR 2

DSMET 1,2,4,6,7,8

DSMEUX 2,8,9

D_F 1,3,9 3.7.3.2

DSMFLB _ ,7

DSMG 1,4,9 3.7.3.3

DSMGUB

DSMI 1,5 3.7.3.4

DSMIDS 5

DSML 1,6 3.7.3.5

DSMQ 1,7 3.7.3.5

DSMR 1 3.7.3.7

DSMRDC 4

DSMRLK 4,9

DSMRSV 4

DSMS 1,8,9 3.7.3.8

DSMU I 3.7.3.9

" DSMX 1,9 3.7.3.10

DSMXFB 9

DSMIST 3

INDEX OF MODULE NAMES

B.I.3 Executive Management STstem

The modules comprising the EM are listed below.

Section 3.5

Name Figure(s)

XAR 6

XAT 2,6

XBS 3,14

XBSDBM 3

XBSDFL 3

XBSDSM 3

XBSGCS 3

XBSIN 3

XBSSP 3

XBSTP 3

XCA 4,6

XCABST 4

XCACL_ 4

XCAI 4

XCAMST 4

XCAMXX 4

XCANCS 4

XCANS 4

XCANSP 4

XCANWC 4

XCATRA 4

XCO 6

XCSCCS 11

XCSCIL 11

XCSCRD 11

Figure numbers refer to figures in

Section

3.5.4.1

3.5.4.6

- B.1-6

Name

XCSCRS

XCSIL

XCSINT

XCSL_G

XCSP

XCSPM

XCSRD

XCSRS

XCSSL

XCSST

XCT

XCTBDU

XCTBMD

XCTDU

XCTEFN

XDR

XDT

XEN

XEX

XEXA

XEXL

XFM

XFMANT

XFMDSM

XFMMM

XFMTM

XG¢

XIF

XLD

EXECUTIVE SYSTEM MODULES

Figure(s) Section

11

4,6

16

6

6,14

4,6

16

16

6,11

11,16

6,7

2,3,7

3,7

3,7

2,3,7

6,8

6

6

6,9

9

9

i,I0

I0

10

10

10

6

6,11

6,12

3.5.4.3

3.5.4.7

3.5.4.4

B. 1-7

Name

XLDALL

XLDBGN

XLDCCS

XLDEND

XLDERR

XLDFDM

XLDFDU

XLDLDM

XLDLDU

XLDVCS

XLDVUT

XLINK

XM

XMCSIL

XMCSPM

XMERR

XMERRI

XMRE

XPA

XPAVTB

XPR

XPU

XRE

XRT

XRTAMU

XRTBAD

XRTBCS

XRTBLR

XRTCAL

INDEX OF MODULE NAMES

Figure(s)

12

12

12

12

13

12

12

12

12

12

12

1,10,14

1

15

15

14,15

15

15

6,16

16

6

6

6

14,17

5,18

5,17

5,17

5,17

5,18

B.1-8

Section

6.3.8.3

3.5.4.5

3.5.4.2

Name

XRTCSS

XKFDAT

XRTEND

XRTI

XRTLRF

XRTLSA

XRTLSE

XRT_DB

XRTPIN

XRTRS

XRTSAR

XRTSAT

XRTSCA

XRTSC@

XRTSCR

XRTSDA

XRTSDR

XRTSDT

XRTSEN

XRTSER

XRTSEX

XRTSG_

XRTSIF

XRTSLD

XRTSPA

XRTSPR

XRTSPU

XRTSRE

XRTSSS

EXECUTIVE SYSTEM MODULES

Figure(s) Sect ion

17,18

18

18

17

5,17

4,17

4,5,17

5,17,18,19

18

17

19

19

19

19

19

19

19

I§

19

19

19

19

19

19

19

19

19

19

19

B.1-9

Name

XRTSTA

XRTSUL

XRTSUP

XRTSYN

XRTTC

XRTU

XRTVCS

XSS

XTB

XTBADV

XTBAIV

XTBLDI

XTBMVA

XTBPNC

XTBPVA

XTBSDV

XTBSIV

XTBSNT

XTBSVA

XTBVAR

XUN

XUNALL

XUNBGN

XUNCCS

XUNCPY

XUNEND

XUNERR

XUNLUH

XXFMSG

XXNMSG

Figure (s)

19

19

19

5,17,19

5,17

18

5,17

6

5,20

20

20

2O

20

2O

20

20

20

20

20

20

6,21

21

21

21

21

21

21

21

23

2L_

INDEX OF MODULE NAMES

Section

6.3.8._.

B.I-10

3.5._.8, 3.5.5.1

3.5.5.2

EXECUTIVE SYSTEM MODULES

B.I.4. UPDATE EM Subsystem

The modules comprising the EM are listed.

Section 3.8.8

Name Figure(s)

XUP 6,1

XUPADD 1

XUPADS 5

XUPALL 1

XUPCDT 2

XUPCGP 2

XUPCHG 1,2

XUPCHI 5

XUPCHS 5

XUPCHX 5

XUPC IN 2

XUPC_B 1,2

XUPC_S 5

XUPCPY 1

XUPCQD 5

XUPCQT 2

XUPCS 1

XUPDIR 5

XUPECE 5

XUPECI 4

XUPERR 3

XUPGPR 2,fi

XUPINS _,S

XUPLST I

XUPMLV 4,5

XUPNEW I

ORIGINAL PAGE IS

OF POOR QUALITY

B.I-II

Figure numbers refer to figures in

Section

3.8.7.1

Name

XUPNMT

XUP_MS

XUP_MT

XUP#ST

XUPPRE

M.JPRLV

XUPSRC

XUPSUM

XUPSYN

XUPXCR

XUPXFR

INDEX OF MODULE NAMES

Figure(s)

1,2,6

5

I

1

1

4

1

I

1,5

1,2

1,6

Section

B.Izl2

B.1.5 General Utilities

EXECUTIVE SYSTEM MODULES

The modules comprising the General Utilities are listed below.

to figures in Section 3.9.4

Name

ALPHA

DIGIT

DVALUE

IAND

ICD

ICI

IC_MPL

IDATE

IL_C

ILSHFT

IMASK

I_R

IRSHFT

ISHIFT

ITIME

IVALUE

IX_R

MEMNUM

NUMTYP

NWDTYP

RVALUE

XASKP

XBSRIN

XBSRRD

XBSRRS

Figure(s)

1

I

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Sect ion

3.9.2.1

3.9.2.2

3.9.2.3

3.9.2.4

3.9.2.5

3,9,2,6

3,9.2,7

3,9,2,8

3.9.2.9

3,9,2.10

3.9.2.11

3.9.2.12

3.9.2,13

3.9.2.i4

3.9.2.15

3.9,2.16

3.9.2.17

3.9.2.18

3.9,2,19

3.9.2.20

3.9.2.21

3.9.2.22

3,9,3.23

3.9.2.24

3.9.2.25

B.I-13

Figure numbers refer

Name

XCR

XCRADD

XCRCF

XCRCH

XCRCI

XCRD_T

XCRDR

XCREF

XCREXP

XCRFC

XCRILL

XCEPD

XCRPH

XCRPN

XCRP_T

XCRPS

XCRREN

XCRRND

XCRSEN

XCRSNM

XCRSRD

XCRWC

XCRWCH

XEXIT

XFAN

XFETCH

XFMTQ

XGETP

INDEX OF MODULE NAMES

Figure(s)

1,2

2,8

2,8

2,8

3,8,8

2,3

2,3,4

2,3,4,5,7

3,4,5

2,6

2,7,8

2

3,8

2

2

2,3,7,8

2,8

6

2,8

3,4,5,8

6

1,8

8

1,9

I

I

1

1

B. 1-1_,

Section

3.9.2.26

3.9.2.27

3.9.2.28

3.9.2.29

3.9.2.30

3.9.3.31

3.9.2.32

Name

XINC

XMOVE

XMPRT

XPAGE

XPK

XPKM

XPLAB

XPLABQ

XPLINE

XPUTP

XSORTF

XSTORE

XTBDMP

XTBERR

XTRACE

XTRL_C

XTIAL

XTIFV

XT2AL

XT3FL

XT3FV

XT31F

XT3LK

XUFMSG

XUNPK

XUNPKM

XUNPKT

XVNAME

XZFILL

EXECUTIVE

Figure(s)

1

1

I

1

1

1

1

1

1

I

I

I

1

I0

I, ii

11

1

1

1

1

1

1

I

12

1

I

1

1

1

SYSTEM MODULES

Section

3.9.2.3q

3.9.2°34

3.8.2.35

3.9.2,36

3.9.2,37

3.9.2.38

3.9,2.39

3.9,2.40

3.9.2.41

3.9.2.42

3.9.2._3

3.9.2.qq

3.9,2.t_5

3.9.3,2

3.9.2.46

3.9,2.47

3,9,2,48

3,9.2.49

3,9.2.50

3.9.2,51

3.9.2.52

3.9.2.53

3.9.3.1

3.9.2.5_

3,9.2.55

3.9.2.56

3.9.2.57

3.9.2.58

B.1-15

APPENDIXC

INDEXTOERRORMESSAGENUMBERS

C.I EXECUTIVESYSTEMERRORS

Followingis a list of the error messagesandnumbersfor the DataBaseManagement

System,DynamicStorageManagementSystem,ExecutiveManagementSystem,GeneralUtilities,

andUpdate.

Thelowercaseletter n hasbeenusedwherea FORTRANnamewouldbeprinted. The

lowercaseletter v hasbeenusedwherea FORTRANvaluewouldbeprinted.

C.I.I Executive Management System (EM)

C.l.l.l Fatal Errors

Fatal EM errors are processed by XXFMSG. For further description of the XXFMSG

module, see Section 3.5.5.1. Fatal EM errors have been assigned the nunlbers 1-999.

All messages are prefixed by:

_ EXEC ERROR (ERROR NUMBER v) **_ (CALLER n)

The messages and numbers are as follows:

i

2

3

4

S

6

7

INSUFFICIENT CORE TO EXPAND TABLE. CURRENT LENGTH OF n TABLE IS v.

ERROR IN ANOPP PRIMARY EDIT PHASE.

INSUFFICIENT CORE TO ALLOCATE n TABLES.

MEMCUR, n, IS NOT THE SAME AS THE NAME, n, IN THE MDBT.

INVALID ODB ENTRY. TYPE CODE = v.

INVALID MEMBER TYPE OR MAX NUMBER OF MEMBERS EXCEEDED. TYPE = n.

KRACKED TABLE OVERFLOW. RECOMPILATION NECESSARY TO ALLOW FOR v CARD

IMAGES PER CONTROL STATEMENT.

MAXIMUM RECORD LENGTH, v, RETURNED FROM MEMBER MANAGER OPEN CALL FOR

MEMBER n IS NOT THE SAME AS THE MAX CS RECORD LENGTH, v, IN THE MDBT OR

THE LABEL RECORD LENGTH, v, IN THE MDBT.

STATUS, v, RETURNED FROM MEMBER MANAGER POSITION CALL FOR MEMBER n.

C.I-1

i0

ii

12

13

14

15

16

17

18

19

2O

21

22

23

INDEX TO ERROR MESSAGE NUMBERS

FOR M}_4BER n STATUS RETURNED FROM MEMBER MANAGER GET RECORD CALL IS v

NUMBER OF WORDS EXPECTED v -- NUMBER OF WORDS RETURNED v.

REQUESTED LABEL n IS NOT FOUND.

INVALID CONTROL STATEMENT NAME, n, ON CURRENT MEMBER n.

INVALID INPUT n = v.

INVALID INPUT n = n.

UNEXPECTED ERROR RETURNED FROM MEMBER MANAGER CALL. CODE IS v.

INVALID INTEGER, v, USED IN IDENTIFICATION OF EXECUTIVE SYSTEM MODULE
OR FUNCTIONAL MODULE.

ERROR DETECTED IN ANOPP INITIALIZATION PHASE

UNEXPECTED OUTPUT FROM n. PAR_ETER IS n - VALUE IS v.

UNEXPECTED OUTPUT FROM n. PARAMETER IS n - VALUE IS n.

END OF FILE DETECTED IN PRIMARY INPUT STREAM. INSUFFICIENT INPUT FOR

REQUIRED STARTCS.

THE LRCS BLOCK ALLOCATED IS NOT MAXIMUM REQUIRED FOR XCA PROCESSING.

NONEXPANDABLE TABLE n IS INSUFFICIENT.

SUBSTITUTION TABLE ALLOCATION IS NOT EXACT NUMBER OF WORDS MOVED TO TABLE.

C.I-2

EXECUTIVE SYSTEM ERRORS

C.I.I.2 Non-Fatal Errors

Non-fatal EM errors are processed by XXNMSG. For further description of the XXNMSG

module, see Section 3.5.5.2. VAR4 is a ten word array which enables the printing of card

images and more explanatory e_or messages. Non-fatal EM errors have been assigned the

numbers 1001-1999.

All messages are prefixed by:

"/:** EXEC ERROR (ERROR NUMBER v) _ (CALLER n)

The messages and numbers are as follows:

i001 INVALID LABEL FIELD.

1002 INVALID OR MISSING CS NAME

1003 CONTINUATION SEQUENCE EXCEEDS MAXIMUM CARD LIMIT. SEQUENCE IS ARBITRARILY

TERMINATED.

1004 REFERENCE MADE TO NON-EXISTENT LABEL = n.

1005 DUPLICATE n = n.

1006 GOT0 OR IF CS REFERENCES OWN LABEL = n.

1007 INVALID END * FIELD OR EXTRANEOUS FIELDS DETECTED ON END _ CS.

1008 EXTRANEOUS FIELDS DETECTED ON n CONTROL STATEMENT.

1009 EOF DETECTED ON INCOMPLETE CS IN INPUT STREAM. IT IS CONSIDERED IN ERROR

AND IS NOT BEING PROCESSED.

i010 INVALID CS NAME = n.

i011 STARTCS CONTROL STATEMENT MISSING. COMPILATION CONTINUING.

1012 INVALID STARTCS CONTROL STATEMENT. COMPLETE ERROR RECOVERY.

1013 KEYWORD FIELD IS NOT A NAME OR MISSING = SIGN. PROCESSING CONTINUES WITH

NEXT ENCOUNTERED VALID FIELD.

1014 THE INITIALIZATION VALUE FOR n IS INCORRECT. PROCESSING CONTINUES WITH

NEXT ENCOUNTERED VALID FIELD.

1015 THE LENGTH OF GLOBAL CORE REQUESTED FOR THIS ANOPP RUN IS v. THE MINIMUM

LENGTH REQUIRED IS v.

1016 n IS AN INVALID KEYWORD. PROCESSING CONTINUES WITH NEXT ENCOUNTERED VALID

FIELD.

1017 NEXT TO LAST FIELD ON ANOPP CS IS EXTRANEOUS.

vP_I_JNAL PAGE I_

0_. Poor QHaL_M

C.1-3

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

INDEX TO ERROR MESSAGE NUMBERS

LAST FIELD ON ANOPP CS IS EXTRANEOUS.

INSUFFICIENT CORE TO EXPAND TABLE. CURRENT LENGTH OF n IS v.

USER PARAMETER n NOT FOUND IN USER PARAMETER TABLE.

ATTEMPT TO PERFORM n OPERATION ON TWO FIELDS OF DIFFERENT TYPES. TYPES

ARE v AND v.

ILLEGAL FIELD TYPE FOR n OPERATION. TYPE IS v.

ATTEMPT TO COMPARE TWO n FIELDS WITH INVALID LOGICAL OPERATOR. CODE FOR

OPERATOR IS v.

EXECUTIVE ERROR INDICATOR SET TO .TRUE. WHEN PROCESSING n CONTROL STATE-

MENT.

MISSING FIELD DETECTED ON n CONTROL STATEMENT.

INVALID FIELD DETECTED ON n CONTROL STATEMENT. FIELD EXPECTED TO CONTAIN

n.

UNRECOGNIZABLE FIELD DETECTED n.

UNEXPECTED INPUT. PARAMETER IS n - VALUE IS v.

STARTCS ENCOUNTERED ON ANOPP CONTROL STATEMENT. COMPLETE ERROR RECOVERY.

DUPLICATE MEMBERS DETECTED ON ABOVE DATA CONTROL STATEMENT. MEMBER NAME

= n.

TABLE EXPANSION ON n TABLE UNSUCCESSFUL. n ENTRY NOT ADDED.

UPDATE OR TABLE (SOURCE = _') CS FORM IS INVALID IN SECONDARY INPUT STREAM.

SECONDARY INPUT STREAM MEMBER, n, DOES NOT EXIST.

SECONDARY INPUT STREAM MEMBER, n, IS NOT IN CARD IMAGE (CI) FORMAT.

LOCAL DYNAMIC STORAGE INSUFFICIENT TO ALLOCATE ALL BLOCKS NECESSARY FOR

SECONDARY INPUT STREAM PROCESSING.

LOCAL DYNAMIC STORAGE HAS BEEN INITIALIZED BUT NOT RELEASED.

USER LOCK ON n HAS NOT BEEN CLEARED.

DATA TABLE n (n) OPENED BUT NOT CLOSED, TABLE REMOVED FROM CORE.

DATA MEMBER n (n) OPENED BUT NOT CLOSED. LOGICAL CLOSE PERFORMED.

DATA UNIT n, DATA MEMBER n CANNOT BE OPENED TO READ.

C. 1-_,

EXECUTIVE SYSTEM ERRORS

C.I.2 Data Base Management System (DBM)

C.I.2.1 Member Manager (MM)

Member Manager module and control statement error messages are processed by MMERR.

For further description of the MMERR module, see Section 3.6.3.9.1.

All messages are prefixed by:

*** DBM ERROR)I2ROR NUMBER v) *** (CALLER n)

The messages and numbers are as follows:

1 BAD INPUT TO SUBROUTINE n. VALUE = v.

2 DATA UNIT NAME NOT UNIQUE.

3 EXTERNAL FILE NAME NOT UNIQUE.

4 DATA UNIT DIRECTORY FULL.

5 DATA MEMBER DIRECTORY SPACE NOT AVAILABLE. LENGTH OF MEMBER DIRECTORY IS

n. LENGTH OF DYNAMIC STORAGE BLOCK OBTAINED FOR THE MEMBER DIRECTORY IS v.

6 BUFFER SPACE NOT AVAILABLE.

7 BUFFER ALREADY EXISTS.

8 BUFFER DOES NOT EXIST.

g FILE DOES NOT HAVE PROPER HEADER.

i0 DATA UNIT DOES NOT EXIST.

ii CANNOT GENERATE EXTERNAL FILE NAME.

12 DATA UNIT DIRECTORY SPACE IS NOT AVAILABLE.

13 DATA TABLE DIRECTORY SPACE IS NOT AVAILABLE.

14 ACTIVE MEMBER DIRECTORY SPACE IS NOT AVAILABLE.

15 MEMBER DIRECTORY SPACE IS NOT AVAILABLE.

16 XSUNIT NOT CREATED.

17 DATA NOT CREATED.

18 OPEN MEMBER COUNT NOT ZERO.

19 LAST RECORD NOT COMPLETE ON UNIT n MEMBER n.

C.I-5

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

_4

45

46

INDEX TO ERROR MESSAGE NUMBERS

INVALID INPUT ARGUMENT.

INVALID MEMBER FORMAT.

FOLLOWS. n ... n.

LIBRARY FILE DIRECTORY SPACE NOT AVAILABLE.

DATA MEMBER IS ALREADY OPEN ON UNIT n MEMBER n.

DATA UNIT IS NOT IN THE UNIT DIRECTORY. UNIT n MEMBER n.

ACTIVE MEMBER DIRECTORY IS FULL AND CANNOT BE EXPANDED - EXPAND FIELD
LENGTH AND GLOBAL DYNAMIC STORAGE.

DATA UNIT ALREADY OPEN FOR DIRECT WRITE. UNIT n MEMBER n.

WRITE INHIBITED ON DATA UNIT. UNIT n MEMBER n.

INSUFFICIENT DYNAMIC STORAGE FOR MEMBER MANAGER USE - EXPAND FIELD LENGTH
AND GLOBAL DYNAMIC STORAGE. UNIT n MEMBER n.

THE DATA MEMBER IS OPEN TO TABLE MANAGER. UNIT n MEMBER n.

DATA MEMBER IS NOT IN MEMBER DIRECTORY. UNIT n MEMBER n.

OPEN MEMBER COUNT IS NEGATIVE. UNIT n.

DATA UNIT OR MEMBER NAME IS MALFORMED. UNIT n.

READ ERROR ON MEMBER DIRECTORY. UNIT n.

READ ERROR ON MEMBER HEADER. UNIT n MEMBER n.

INVALID DIRECTORY OR TABLE ID.

INVALID MODE ARGUMENT INPUT. UNIT n MEMBER n.

INVALID UNIT DIRECTORY ENTRY. UNIT n.

FILE BUFFER ASSIGNMENT FAILED. UNIT n.

UNIT n MEMBER n.

UNIT n MEMBER n. FORMAT SPECIFICATION IMAGE

MISMATCHED RIGHT AND LEFT PARENTHESES. UNIT n MEMBER n.

UNRECOGNIZABLE FIELD(S) IN FORMAT. UNIT n MEMBER n.

FORMAT FIELD - TYPE = n, VALUE = v.

INVALID VARIABLE FORMAT - VARIABLE REPEAT GROUP MUST BE LAST. UNIT n

MEMBER n.

INVALID REPEAT GROUP SPECIFICATION - FORMAT IS INVALID. UNIT n MEMBER n.

INVALID ELEMENT SPECIFICATION - FORMAT IS INVALID. UNIT n MEMBER n.

EXTRANEOUS LEFT PARENTHESIS. UNIT n MEMBER n.

UNIDENTIFIABLE SEPARATOR IN FORMAT. UNIT n MEMBER n.

C. 1-6

47

48

49

5O

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

EXECUTIVE SYSTEM ERRORS

MORE THAN ONE VARIABLE REPEATING GROUP SPECIFIED. UNIT n MEMBER n.

CYBERRECORD MANAGER ERROR ON PUT. UNIT n MEMBER n.

PREVIOUS RECORD IS INCOMPLETE. UNIT n MEMBER n.

RECORD LENGTH IS INCOMPATIBLE WITH FORMAT SPECIFICATION. UNIT n MEMBER n.

NUMBER OF RECORDS PUT TO MEMBER EXCEEDS MAXIMUM DEFINED BY THE OPEN REQUEST.
UNIT n MEMBER n.

NUMBER OF WORDS TO BE PUT IS NEGATIVE. UNIT n MEMBER n.

UNUSED.

UNUSED.

LAST I/O OPERATION DID NOT END ON AN ELEMENT BOUNDARY. UNIT n MEMBER n.

THiS CALL MAY NOT BE USED WITH UNFORMATTED RECORDS. UNIT n MEMBER n.

NUMBER OF ELEMENTS TO BE PUT IS NEGATIVE. UNIT n MEMBER n.

TOTAL RECORD LENGTH EXCEEDS FIXED FORMAT SPECIFICATION. UNIT n MEMBER n.

RECORD DIRECTORY IS FULL - INCREASE MAXIMUM NUMBER OF RECORDS IN OPEN

REQUEST. UNIT n MEMBER n.

NUMBER OF WORDS TO BE READ IS LESS THAN OR EQUAL TO ZERO. UNIT n MEMBER n.

ATTEMPT TO READ BEYOND END OF MEMBER. UNIT nMEMBER n.

CYBER RECORD MANAGER ERROR ON GET. UNIT n MEMBER n.

RECORD ARRAY SIZE IS LESS THAN OR EQUAL TO ZERO. UNIT n MEMBER n.

NUMBER OF ELEMENTS TO BE READ IS LESS THAN OR EQUAL TO ZERO. UNIT n
MEMBER n.

MEMBER IS UNFORMATTED - IMPROPER USE OF THIS CALL. UNIT n MEMBER n.

NUMBER OF WORDS EEAD IS INCOMPATIBLE WITH THE FORMAT ELEMENT SPECIFICATIONS.

UNIT n MEMBER n.

NAME(3) IS NOT A VALID IDX, UNIT n MEMBER n.

INVALID DATA MEMBER NAME OR IDX IN NAME ARGUMENT. UNIT n MEMBER n.

INVALID DATA UNIT NAME OR IDX IN NAME ARGUMENT. UNIT n MEMBER n.

DATA MEMBER IS NOT OPEN FOR THE MODE SPECIFIED FOR THIS CALL. UNIT n

MEMBER n.

WARNING - OLD MEMBER IS STILL OPEN TO READ FOLLOWING CLOSE OF NEW MEMBER

OF SAME NAME. UNIT n MEMBER n.

C.I-7

72

73

INDEXTOERRORMESSAGENUMBERS"

ATTEMPTEDTOCLOSEMEMBEROPENVIAMMOPWSWHILEANOTHERMEMBERONTHESAME
UNITWASSTILLOPENVIAMMOPWD.UNITn MEMBERn.

INSUFFICIENTGLOBALDYNAMICSTORAGEFORMMCLOSSCRATCHCOPY.

UNITn MEMBERn.

UNITn MEMBERn.

MEMBERn.

74 INVALIDNAMEARGUMENTINPUT.

75 INVALIDMODEARGUMENTINPUT.

UNITn

Themessagesprocessedby XLDERRare listed below.

the XLDER/_ module, see Section 3.6.3.8.3

I0

11

The L_AD control statement uses the module XLDERR to process its errors.

For further description of

12

All messages are prefixed by:

_ LOAD ERROR (ERROR NUMBER - v) _ (CALLER - n)

The messages and nuntbers are as follows:

1 ERROR v DETECTED BY OPERATING SYSTEM ON FILE n.

2 INSUFFICIENT LOCAL DYNAMIC CORE IS AVAILABLE.

3 EXTERNAL FILE NAME n IS ALRZADY ASSIGNED TO DATA UNIT n.

4 THE LIBRARY DIRECTORY RECORD IS INVALID. ID IS n, CNE IS v.

5 DATA UNIT n IS NOT DEFINED ON SEQUENTIAL LIBRARY n.

6 DATA UNIT n, DATA MEMBER n IS NOT DEFINED ON SEQUENTIAL LIBRARY n.

7 NUMBER OF DATA UNITS TO BE LOADED EXCEEDS THE NUMBER OF ENTRIES AVAILABLE

IN THE DATA UNIT DIRECTORY.

8 DATA UNIT n ALREADY EXISTS IN THE DATA UNIT DIRECTORY.

9 FILE NAME /n/ GIVEN FOR DATA UNIT n IS ALREADY IN USE FOR ANOTHER DATA

UNIT.

FILE NAME /n/ GIVEN FOR DATA UNIT n IS IN USE AS A LIBRARY FILE.

LIBRARY FILE ANOMALY, DATA UNIT/MEMBER NAMED IN THE LIBRARY DIRECTORY IS

NOT ON THE LIBRARY.

LIBRARY UNIT HEADER IS INVALID v.

The UNLOAD contmol :.tatment uses the module XUNERR to process its errors.

The messages processed by XUNERR are listed below. For further description of

the XUNERR module, see Section 3.6.3.8.4

All messages are prefixed by:

B

C.I-8

EXECUTIVESYSTEMERRORS
_ UNLOADERROR(ERRORNUMBER- v) * (CALLER- n)

Themessagesandnumbersare as follows:

i ERROR v DETECTED BY OPERATING SYSTEM ON FILE n.

2 INSUFFICIENT LOCAL DYNAMIC CORE IS AVAILABLE.

3 EXTERNAL FILE NAME n IS ALREADY ASSIGNED TO DATA UNIT n.

4 SEQUENTIAL LIBRARY FILE n WAS USED IN PREVIOUS LOAD OR UNLOAD.

5 DATA UNIT n IS NOT DEFINED.

6 DATA MEMBER n DOES NOT EXIST ON DATA UNIT n.

The DROP control statement prints its own message for errors encountered.

C.I-9

INDEXTOERRORMESSAGENUMBERS

C.I.2.2 TableManager(TM)

TableManagerandTABLEcontrol statementerror messagesare processedby TMERR.

further description of the TMERRmodule,seeSection3.6.4.6.1.

All messagesare prefixed by;

* DTMERROR(ERRORNUMBERv) _ (CALLERn)

Themessagesandnumbersare as follows:

6

7

8

9

i0

ii

12

13

14

15

16

17

18

19

20

21

For

ARGUMENT v OUT OF RANGE. ARGUMENT IS n.

INVALID INPUT

DYNAMIC CORE NOT AVAILABLE.

ERROR RETURNED FROM n. ERROR CODE IS v.

INDEPENDENT VARIABLE ARRAY NOT IN MONOTONIC SEQUENCE. ARRAY DUMP FOLLOWS

V.

INPUT RECORD FROM UNIT n, MEMBER n, NOT IN CARD IMAGE FORMAT.

LOCAL CORE BLOCK FOR CRACK TABLE NOT SUFFICIENT.

VALUE n NEEDED TO BUILD TABLE TYPE n NOT PRESENT.

INVALID VARIABLE NAME n.

INVALID INPUT - CURRENT CARD IMAGE IS NOT CARD EXPECTED.

INVALID INPUT - DUPLICATE VARIABLE NAME n.

ERROR DETECTED ON FOLLOWING CARD IMAGE v.

INVALID INPUT - MISSING FIELDS DETECTED.

INVALID INPUT - FIELD EXPECTED n.

TABLE NOT BUILT.

INVALID VALUE ENTRY, EXPECTED VARIABLE TYPE n - ACTUAL VARIABLE TYPE v.

EXCESSIVE VALUE ENTRIES.

TABLE ON UNIT - n AND MEMBER - n IS NOT OPEN AS EXPECTED.

USER DOESN'T OWN DATA TABLE.

IDX TO THE DATA TABLE DIRECTORY IS INVALID.

NAMED DATA TABLE, n; n, IS ALREADY OPEN TO DATA TABLE MANAGER.

C.I-IO

22

23

24

25

26

27

28

EXECUTIVESYSTEMERRORS

NAMEDDATATABLE,n, n, IS ALREADYOPENTODATAMEMBERMANAGER.

THEDATATABLEDIRECTORYIS FULL.

THENAMIDDATATABLEn, n IS NOTDEFINEDTODATABASEMANAGER.

SUFFICIENTDYNAMICSTORAGEIS NOTAVAILABLEFORDATATABLEn, n.

DATAMEMBERn, n, IS NOTA DTMDATATABLE.

DATATABLEn, n IS NOTDEFINEDTODATATABLEMANAGER.

NAMEARGUMENTUSEDTOCLOSEDATATABLEn, n MUSTBETHEONEUSEDIN
OPENINGTHETABLE.

C. 1-11

INDEX TO ERROR MESSAGE NUMBERS

C.i.3 Dynamic Storage Management System (DSM)

DSM error messages are processed by DSMERR. For further description of the DSMERR

module, see Section 3.7.4.1.

All messages are prefixed by:

_n DSM ERROR (ERROR NUMBER v) _e (CALLER n)

The messages and numbers are as follows:

1

2

3

5

6

7

8

9

10

11

12

13

n IS ALREADY INITIALIZED.

n CORE IS INSUFFICIENT FOR INITIALIZATION.

GDS/LDS OVERLAP.

n IS INVALID DS TYPE.

v IS INVALID DS START ADDRESS.

n IS INVALID DS USER.

MIN IS GREATER THAN MAX.

INVALID IDX FOR n.

n IS ALREADY UNLOCKED.

n HAS ALREADY BEEN OVERLAYED.

n IS NOT INITIALIZED.

MIN OR MAX IS INVALID NEGATIVE LENGTH.

MIN AND MAX ARE ZERO LENGTH.

C. 1-12

EXECUTIVE SYSTEM ERRORS

C.I.4 UPDATE

UPDATE error messages are processed by XUPERR. For further description of the XUPERR

module, see Section 3.8.7.1.

All messages are prefixed by:

*** UPDATE ERROR (ERROR NUMBER v) *** (CALLER n)

The messages and numbers are as follows:

i

2

3

4

5

6

7

8

9

i0

ii

12

13

14

15

16

17

18

19

20

INVALID INPUT : v.

MEMBER MANAGER OPEN TO READ FOR DATA UNIT n, DATA MEMBER n.

INVALID MEMBER LEVEL DIRECTIVE n.

INSUFFICIENT CORE TO ALLOCATE v WORDS.

UNIT : n IS NOT IN UNIT DIRECTORY.

INVALID KEYWORD FIELD.

THE ALL PARAMETER MAY NOT BE SPECIFIED DURING CREATE MODE.

0LDU, NEWU, OR SOURCE UNITS ARE IN CONFLICT.

REQUIRED DATA UNIT IS NOT SPECIFIED.

CURRENT CONTROL STATEMENT NAME IS n.

INVALID KEYWORD : n.

DATA UNIT n IS ARCHIVED.

INVALID LIST OPTION = n.

NUMBER OF RECORDS OR LENGTH OF ARRAY TO HOLD RECORDS IN TRANSIT IS

INCORRECT.

SOURCE DATA MEMBER CONTAINING THE SET OF UPDATE DIRECTIVES IS NOT IN

CARD IMAGE FORMAT.

INCORRECT TABLE NAME FOR n TABLE.

DATA UNIT n, DATA MEMBER n IS NOT OPEN TO READ.

DATA UNIT n, DATA MEMBER n IS NOT OPEN TO WRITE.

NUMBER OF RECORDS TO BE COPIED v OR LENGTH OF ARRAY v IS INCORRECT.

DATA MEMBER n ALREADY EXISTS ON THE NEW DATA UNIT n.

C.1-13

21

22

23

24

25

26

2'7

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

INDEX_0 E_OR _SSAGENU_ERE

NUMBER OF RECORDS v COPIED TO THE NEW DATA MEMBER IS LESS THAN NUMBER OF

RECORDS v REQUESTED.

BAD FIELDS RETURNED FROM CALL TO XCR.

INVALID RECORD READ FROM DATA MEMBER UPDATS.

n IS AN INVALID RECORD LEVEL DIRECTIVE.

NUMBER OF CARD IMAGES EXCEEDS MAXIMUM ALLOWED v.

DIRECTIVE INCOMPLETE WHEN END OF SOURCE MEMBER ENCOUNTERED. COMPLETE

ERROR RECOVERY.

INSUFFICIENT STORAGE FOR CRACKING UPDATE DIRECTIVE.

INSUFFICIENT COKE FOR STORING THE UPDATE DIRECTIVE IMAGE.

DIRECTIVE CONTAINS A FIELD OF IMPROPER TYPE. FIELD SHOULD CONTAIN A NAME.

DATA UNIT n, DATA MEMBER n SPECIFIED TO BE COPIED DOES NOT EXIST ON OLD
UNIT.

UPDATE DIRECTIVE CONTAINS A FIELD OF IMPROPER TYPE. FIELD SHOULD CONTAIN

AN INTEGER.

EXTRANEOUS FIELDS ON UPDATE DIRECTIVE.

LAST RECORD TO BE COPIED v IS NOT IN THE RANGE OF RECORDS ON OLDM.

INVALID FORM = KEYWORD FIELD.

RECORD v TO BE INSERTED IS NOT WITHIN THE RANGE O£ RECORDS ON OLDM.

INSUFFICIENT CORE TO ALLOCATE OR EXPAND n TABLE.

THE OLDM KEYWORD FIELD IS NOT FOLLOWED BY A DATA UNIT, A DATA MEMBER, OR *.

INVALID NEWM KEYWORD FIELD. NEWM = MUST BE FOLLOWED BY A MEMBER NAME.

INVALID FORMAT FIELD.

INVALID MNR KEYWORD FIELD. MNR = MUST BE FOLLOWED BY AN INTEGER.

REQUIRED KEYWORD OLDM IS NOT PRESENT.

REQUIRED KEYWOPd) NEWM IS NOT PRESENT.

OLDM = n (IS NOT FOLLOWED BY A DATA MEMBER NAME).

DATA MEMBER NAME n IS NOT FOLLOWED BY CLOSING PARENTHESIS

THE OLDM KEYWORD FIELD IS NOT FOLLOWED BY A DATA UNIT O_ A MEMBER NAME.

THE -DELETE RECORD LEVEL DIRECTIVE DOES NOT INCLUDE RECORD NUMBERS.

LAST RECORD v TO BE DELETED IS NOT GREATER THAN THE FIRST RECORD v.

C. 1-1v,

48

49

5O

51

52

EXECUTIVE SYSTEM ERRORS

RECORD v AFTER WHICH RECORDS ARE TO BE INSERTED, IS LT OLDM REFERENCE

POINTER v.

INVALID INPUT n = v.

RANGE v = v OF RECORDS TO BE INSERTED NOT WITHIN RANGE OF OLDM.

SOURCE DATA UNIT n, DATA MEMBER n CANNOT BE FOUND.

OLDM DATA UNIT n, DATA MEMBER n CANNOT BE POUND.

C.I-15

INDEX TO ERROR MESSAGE NUMBERS

C.I.5 General Utilities

Most General Utility fatal error messages are processed by XUFMSG. However, several

utility modules which are called mainly by Table Manager in maintaining data tables

utilize a separate error message module, XTBERR.

The messages processed by XUFMSG are listed below. For luther description of the

XUFMSG module, see Section 3.9.3.1.

All messages are prefixed by:

*** UTILITY ERROR (ERROR NUMBER v) *** (CALLER n)

The messages and nun_bers are as follows:

1 ARGUMENT n OUT OF RANGE. ARGUMENT IS v.

2 ARGUMENT n IS NOT A NUMERIC CHARACTER AS EXPECTED. ARGUMENT IS v.

3 INVALID INPUT n : v.

4 ARGUMENT n IS AN INVALID ANOPP TYPE CODE. ARGUMENT IS v.

5 USER PARAMETER n NOT FOUND IN USER PARAMETER TABLE.

6 USER PARAMETER TYPE v DOESN'T MATCH TYPE IN UPT v.

7 REQUEST TO EXPAND n NOT COMPLETE.

8 INVALID INPUT n = n.

9 n DYNAMIC CORE NOT AVAILABLE FOR n TABLE ALLOCATION.

For further description of the XTBERR module, see Section 3.9.3.2.

All messages are prefixed by:

*** XTB ERROR (ERROR NUMBER v) 2** (CALLER n)

The messages and numbers are as follows:

INVALID CHAIN IDENTIFIER - n = v.

INVALID KEY POSITION - n = v.

INVALID POSITION INDICATOR - n _= v.

NO ROOM FOR NEW ENTRIES - n = v.

INVALID SYSTEM TABLE TYPE - n = v.

\ C.1-16

APPENDIX D

REFERENCES

Publications referenced in this manual are listed below in alphabetic order.

CYBER Record Manager Reference Manual

Control Data Corporation

P[_lication: 60307300

CYBER Record Manager User's Guide

Control Data Corporation

Publication: 50359600

FORTPAN Extended Version 4 Reference Manual

Control Data Corporation

Publication: 60305501

NASTRAN PROGRAMMERS MANUAL

National Aeronautic and Space Administration

Publication: SP-223 (01)

NOS 1.0 Reference Manual

Control Data Corporation

Publication: 60435400

Update Reference Manual

Control Data Corporation

Publication: 60342500

D-I

